Predictive value of liquid biopsy of serum PSA-glycosylation isomer for pathological characteristics of localized index prostate cancers: a multi-institutional study

1Department of Urology, Tokai University School of Medicine, 2Department of Pathology, Tokai University Hachioji Hospital, 3Konica Minolta Inc.

Sunao Shoji1, Shinichiro Hiraiwa2, Takato Uchida1, Izumi Hanada1, Tatsuya Otaki1, Takahiro Ogawa1, Masayoshi Kawakami1, Hakushi Kim1, Masahiro Nitta1, Masanori Hasegawa1, Yoshiaki Kawamura1, Tomonori Kaneko3, Jun Okada3, Takatoshi Kaya3, Akira Miyajima1
Objectives

To evaluate the usefulness of PSA-Gi in predicting pathological findings for biopsy-proven index prostate cancers.

Methods

We included 67 patients whose serum PSA levels were ≤ 20 ng/ml, and who had undergone multi-parametric magnetic resonance imaging (mpMRI) in Tokai University Hospital and Tokai University Hachioji Hospital. PSA-Gi™, which is PSA-glycosylation isomer (Figure 1), was measured through an automated two-step Wisteria Floribunda Agglutinin lectin–anti-PSA antibody sandwich immunoassay using a highly sensitive surface plasmon field-enhanced fluorescence spectrometry system (Figure 2). MRI-transrectal ultrasound elastic fusion image-guided target biopsies were performed for cancer-suspicious lesions with PI-RADS category ≥ 3 (PI-RADS version 2). The cancer lesion with highest Gleason score and/or longest core length was considered to be the index cancer.

Figure 1. Structure of normal PSA and PSA-glycosylation isomer

Figure 2. Anti-PSA antibody sandwich immunoassay using highly sensitive surface plasmon field-enhanced fluorescence spectroscopy (SPFS) system
Results

Median PSA-Gi™ levels significantly differed between patients with vs. without detected biopsy-proven clinically significant cancer [0.107 ng/mL (U/mL) vs. 0.022 ng/mL (U/mL), P<0.0001] (Figure 3), and this disparity was especially pronounced among patients with PI-RADS assessment category 3 disease [0.122 ng/mL (U/mL) vs. 0.022ng/mL (U/mL), P<0.0001] (Figure 4).
Areas under ROC curves based on PSA-Gi™ levels (AUC: 0.897, 95% CI: 0.826–0.968; P<0.0001) and on highest PI-RADS assessment category (AUC: 0.695, 95% CI: 0.565–0.824; P=0.007) were significantly greater than non-discrimination (Figure 5). Among patients with biopsy-proven clinically significant cancers (n=41), PSA-Gi™ levels and Gleason scores for index cancers were correlated (r=0.400, P=0.009) (Figure 6).

Figure 5. ROC curves using PSA-Gi™ and highest PI-RADS category for prediction of clinically significant cancer detection

Figure 6. Relationship between PSA-Gi™ and Gleason score of the biopsy-proven significant cancer

Conclusions

PSA-Gi™ might predict pathological findings of biopsy-proven index prostate cancers. However, larger studies are needed to verify its predictive value.

Conflicts of interest

The authors declare no conflicts of interest.