MP47-12 Correlating Simulator and Live Robotic Surgical Performance Using Biometrics, Simulator Metrics and Automated Performance Metrics

Andrew Cowan¹, Runzhuo Ma¹, Jessica Nguyen¹, Swetha Rajkumar¹, Samuel Mingo¹, Ryan Hakim¹, Sandra Marshal², Andrew J. Hung M.D.¹

¹Center for Robotic Simulation and Education, USC Institute of Urology
²Eyeworks, Inc. Solana Beach, CA
This study was funded in part by an Intuitive Surgical Clinical Grant; Intuitive Surgical provided the systems data recorder.

Research reported in this publication was supported in part by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number K23EB026493.

Andrew J. Hung has financial disclosures with Quantgene, Inc. (consultant) and Mimic Technologies, Inc. (consultant).
Background / Materials and Methods

Expert and novice surgeons performed a vesicourethral anastomosis in two different training environments.

Objectives

• To determine which metrics in the dry lab and simulator environments can distinguish expert from novice performance.

• To determine which metrics correlate between dry lab and simulator environments.

Expert and novice surgeons performed a vesicourethral anastomosis in two different training environments.
Results and Conclusions

Which **Metrics** Determine Expert v. Novice?

Simulation
- 5/23 Metrics*
 - Cognitive Workload

Dry Lab
- 15/23 Metrics*
 - Cognitive Workload
 - Heart Rate Variability

*\(p < 0.05 \)

Which **Metrics** Correlate Across **Simulator** and **Dry Lab**?

8/10 Directly Comparable Metrics

\[0.554 \leq \rho \leq 0.927 \]