MP47-14: Objective Metrics of High Cognitive Workload during Robotic Urologic Surgery: A Pilot Study

Jackie Cha¹, James Steward², Jay Sulek², Chandru Sundaram², Juan Wachs¹, Denny Yu¹

¹School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
²Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana, USA
Rationale and Findings

- High cognitive workload adversely affects surgeon performance.

- Technology which automatically detects cognitive workload could lead to better training and fewer clinical errors.

- Electroencephalography (EEG) is one technology to measure cognitive workload.

- Alpha bandpower is indirectly related to cognitive workload, while theta bandpower is directly related.

Objective: To determine if a surgeon's cognitive workload can be accurately predicted by EEG during robotic-assisted urologic surgery.

Conclusion: By comparing high- and low-risk steps of the procedures, EEG can be used to assess the surgeon’s cognitive workload.
Methods and Results

- A 14-channel EEG was worn by four surgeons (2 experts, 2 trainees) during 6 robotic partial nephrectomies and 2 robotic prostatectomies.
- The procedures were divided into high and low risk segments.
- The expert surgeon performed the critical portions of the procedures.
- A total of 35 segments were analyzed.
- For all EEG leads, both alpha and theta bandpower were consistent with significantly greater workload during the critical portions of the procedures (Figure 1).
- For all EEG leads, both alpha and theta bandpower were consistent with significantly greater workload by the expert surgeon compared to the trainee (Figure 2).

Figure 1. Boxplots comparing brain activity before, during, and after critical segments for the (a) alpha bandpower and (b) theta bandpower.

Figure 2. Boxplots comparing brain activity between expert and trainee surgeons for (a) alpha bandpower and (b) theta bandpower.