Lytic Effects Of Water On Bladder Cancer Cells – Implications For Continuous Bladder Irrigation After TURBT R. NANDURKAR¹, P. SLUKA¹, M. LI^{1,2}, H. WARDAN¹, I. D. DAVIS^{1,2}, S. SENGUPTA^{1,2}

- 1. Eastern Health Clinical School, Monash University
- 2. Eastern Health

INTRODUCTION

high cost and toxicity

remaining viable cells

• Recurrence of NMIBC after TURBT is observed in 40-80% of patients • Intraoperative spillage of cells can lead to tumour cell re-implantation and local recurrence • Intravesical chemotherapy is effective at reducing recurrence, but is underutilised due to

- Bladder irrigation with water as opposed to saline may be a comparable alternative to
 - chemotherapy as it causes osmotic cytolysis in addition to mechanical dilution to remove

Lytic Effects Of Water On Bladder Cancer Cells – Implications For Continuous Bladder Irrigation After TURBT R. NANDURKAR¹, P. SLUKA¹, M. LI^{1,2}, H. WARDAN¹, I. D. DAVIS^{1,2}, S. SENGUPTA^{1,2}

- 1. Eastern Health Clinical School, Monash University
- 2. Eastern Health

AIMS

- 1. To determine the time course of osmotic effects of wate
- 2. To determine whether water is able to lyse cancer cell li
- 3. To determine what degree of contamination by urir osmolytic properties

METHOD

IN VITRO

- Two bladder cancer cell lines (HT1197, HT13 saline or 1.5% glycine
- Cell counts were made at regular intervals for
- Cell counts in triplicate were performed with
- These experiments were repeated for colore (COV434), and renal (SKRC52) cancer cell lines IN VIVO
- 21 patients received 3h or saline or water irrig
- Hourly 200mL washout samples were collected hours post-TURBT
- Selected patient samples were sent for immul

er on bladder cancer cells <i>in vitro</i> and <i>in vivo</i> ines other than bladder cancer <i>in vitro</i> ne or blood nullifies the effects of water's	RESUL IN VITRO • Water • Both s • Simila • Grada
376) were exposed to water, 0.9% • 5h trypan blue exclusion ectal (LIM2405, KM23), ovarian s	
gation post-TURBT ted for cell counting at 0, 1, 2, and 3 nohistochemistry (IHC)	<i>IN VIVO</i> (F • 14 pat • 14 pat • 1 f • 9 patie • 7 in • 3 f • 8 h

TS

(Figures 1 & 2)

r caused 100% cell lysis within 20 minutes saline- and glycine-irrigated samples had viable cells remaining at 5h ar results were achieved on all 4 other cancer cell lines ation study showed that an increase to 0.045% NaCl would impact the osmotic functions of water

Figure 1. Viable cell numbers for bladder cancer cell line HT1197 when exposed to water, saline or glycine for up to 5 hours.

Figure 2. Viable cell numbers for bladder cancer cell line HT1197 when exposed to decreasing concentrations of NaCl. Data represents median values of n = 3 measures

Figure 3)

tients received water irrigation *in vivo* me 0 (median) = 14×10^3 cells hour onwards (median) = 0 cells ents received saline irrigation *in vivo* me 0 (median) = 40×10^3 cells hours (median) = 20×10^3 cells ledian cell count never reached zero

Lytic Effects Of Water On Bladder Cancer Cells – Implications For Continuous Bladder Irrigation After TURBT <u>R. NANDURKAR¹, P. SLUKA¹, M. LI^{1,2}, H. WARDAN¹, I. D. DAVIS^{1,2}, S. SENGUPTA^{1,2}</u>

- 1. Eastern Health Clinical School, Monash University
- 2. Eastern Health

RESULTS CONT.

- irrigated patients
- Cytokeratin 7 (CK7) showed bladder epithelial cells in brown

Figure 4. IHC for a saline-irrigated patient

• IHC (Figures 4 & 5) on ex vivo samples showed significant numbers of bladder epithelial cells in saline-irrigated patients in contrast to water-

Figure 5. IHC for a water-irrigated patient

Lytic Effects Of Water On Bladder Cancer Cells – Implications For Continuous Bladder Irrigation After TURBT <u>R. NANDURKAR¹, P. SLUKA¹, M. LI^{1,2}, H. WARDAN¹, I. D. DAVIS^{1,2}, S. SENGUPTA^{1,2}</u>

- 1. Eastern Health Clinical School, Monash University
- 2. Eastern Health

CONCLUSIONS

Water is able to rapidly lyse bladder cancer cells in vitro and in vivo. A short 3-hour period of water irrigation post-TURBT may be an effective intervention to reduce bladder cancer recurrence

- Water is able to lyse viable cells in at least 4 other cancer cell lines • An increase from 0% NaCl (pure water) to 0.045% NaCl was sufficient to alter the efficiency of cytolysis

ACKNOWLEDGEMENTS

scholarship awarded to Ms Nandurkar.

The clinical part of this project is supported by an ANZUP Below-the-Belt grant. We would also like to thank Monash University for their generous

Lytic Effects Of Water On Bladder Cancer Cells – Implications For Continuous Bladder Irrigation After TURBT R. NANDURKAR¹, P. SLUKA¹, M. LI^{1,2}, H. WARDAN¹, I. D. DAVIS^{1,2}, S. SENGUPTA^{1,2}

- 1. Eastern Health Clinical School, Monash University
- 2. Eastern Health

INTRODUCTION

- Recurrence of NMIBC after TURBT is observed in 40-80% of patients
- Intraoperative spillage of cells can lead to tumour cell re-implantation and local recurrence
- Intravesical chemotherapy is effective at reducing recurrence, but is underutilised due to high cost and toxicity
- Bladder irrigation with water as opposed to saline may be a comparable alternative to chemotherapy as it causes osmotic cytolysis in addition to mechanical dilution to remove remaining viable cells

AIMS

- 1. To determine the time course of osmotic effects of water on bladder cancer cells *in vitro* and *in vivo*
- 2. To determine whether water is able to lyse cancer cell lines other than bladder cancer *in vitro*
- 3. To determine what degree of contamination by urine or blood nullifies the effects of water's osmolytic properties

METHOD

IN VITRO

- Two bladder cancer cell lines (HT1197, HT1376) were exposed to water, 0.9% saline or 1.5% glycine
- Cell counts were made at regular intervals for 5h
- Cell counts in triplicate were performed with trypan blue exclusion
- These experiments were repeated for colorectal (LIM2405, KM23), ovarian (COV434), and renal (SKRC52) cancer cell lines

IN VIVO

- 21 patients received 3h or saline or water irrigation post-TURBT
- Hourly 200mL washout samples were collected for cell counting at 0, 1, 2, and 3 hours post-TURBT
- Selected patient samples were sent for immunohistochemistry (IHC)

Figure 3. Water vs saline in vivo

RESULTS CONT.

- irrigated patients

CONCLUSIONS

reduce bladder cancer recurrence

- the efficiency of cytolysis

ACKNOWLEDGEMENTS

The clinical part of this project is supported by an ANZUP Below-the-Belt grant. We would also like to thank Monash University for their generous scholarship awarded to Ms Nandurkar.

• IHC (Figures 4 & 5) on *ex vivo* samples showed significant numbers of bladder epithelial cells in saline-irrigated patients in contrast to water-

Cytokeratin 7 (CK7) showed bladder epithelial cells in brown

Water is able to rapidly lyse bladder cancer cells in vitro and in vivo. A short 3hour period of water irrigation post-TURBT may be an effective intervention to

Water is able to lyse viable cells in at least 4 other cancer cell lines An increase from 0% NaCl (pure water) to 0.045% NaCl was sufficient to alter