PD15-09

The impact of SWL hands-on training on maintaining high success rate and identification of performance improvement factors

hosen er

Atsushi Okada*, Tomoki Okada, Ryosuke Chaya, Kengo Kawase, Yutaro Tanaka, Teruaki Sugino, Rei Unno, Rika Banno, Taiki Kato, Kazumi Taguchi, Shuzo Hamamoto, Ryosuke Ando, Keiichi Tozawa, Kenjiro Kohri, Takahiro Yasui

Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences

· whis Union,

Backgrounds

- Shock wave lithotripsy (SWL) for the clinical treatment of urinary stones was first introduced by Chaussy et al.
- SWL is currently used worldwide due to its simple operability and low invasiveness, and has become the first-line treatment for many types of urinary stones.
- However, the overall success rate is affected by patient factors (skin-tostone distance, abdominal fat distribution, renal function, stone density, and size and location), and treatment factors (firing rate, shock wave intensity, body position, and medication).
- Therefore, consistency in the success rate of this treatment, which ranges between 61 and 96 %, is not maintained.

Backgrounds

 We reported earlier that hands-on training (HOT) significantly improved the SWL success rate from 66.3% to 87.2%.
(Okada A et al. Urolithiasis 2013)

urologists on the efficacy Niimi · Yasuhiko Hirose · Jmemoto · Keiichi Tozawa ·
were determined to be training and prone position for l ureter stones by multivariate analysis and ultrasonic ction for renal and proximal ureter stones by univariate

In this study, we tracked SWL outcome by urologists who completed the training and analyzed factors that contribute to further success of treatment.

Methods

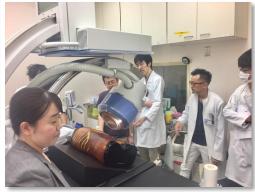
Subjects

Among SWL treatments conducted from December 2011 to May 2018, **458 cases** evaluated by **CT after 3 months** were retrospectively analyzed.

Hands-on-training (HOT)

The HOT has been held **once a year (9 times)**, and **all 20 urologists** who were in charge of operation received one or more HOTs.

Methods


The regimen of 1 day HOT

- 1. 09:00- SWL Basic Course
 - 1 Learning the principle of SWL
 - ② Understanding appropriate case selection
 - ③ Learning the method of fragmentation
 - ④ Understanding expulsive therapy
- 2. 10: 30- Practical training using the human body phantom
 - renal-upper ureter stones: Dual targeting using ultrasonic phantom
 - ② Mid-lower ureter stones: Targeting using X-ray phantom
- 3. 11: 30- Fragmentation training using model stones
- 4. 13: 30- Actual treatment of 2 patients

1 Learning the principle of SWL

②Understanding appropriate case selection

③Learning the method of fragmentation

④Understanding expulsive therapy

Methods

Important items for SWL success

*Restraint belt

*Stretcher wedge

Restrain belt

Stretcher wedge

*Air removal (OptiCouple® Images)

Methods Evaluation items

Regarding the contribution to the success of treatment, the following factors related to treatment were examined using logistic regression analysis;

Patient factors : Age, Gender, Body mass index (BMI)

Stone factors : Location, Size, CT value, Stone-skin distance (SSD) Grade of hydronephrosis (SFU classification), Stagnation period

Therapeutic factors : Compliance rate of recommended technique, Number of treatments, Stent indwelling, Body position, Use of stretcher wedge, Targeting method, Air removal, Shock wave number and frequency

Instrument factor : Lithotripter model, Days after maintenance

Patients' characteristics

*Median (Min – Max)

Age*(y.o.) 59 (18 - 90)
Gender, male n (%) 347 (75.8)
BMI*(kg/m²) 24.1 (14.5 - 38.0)

Backgrounds of the targeted stones (1)

** n (%)

Stone location**	Renal pelvis and calix	180 (39.3)
	UPJ	39 (8.5)
	Proximal Ureter	126 (27.5)
	Middle Ureter	29 (6.3)
	Distal Ureter	81 (17.7)

Backgrounds of the targeted stones (3)

*n (%)

Stone size*	≤4mm	20 (4.4)
	4<≤10mm	305 (66.6)
	10<≤20mm	129 (28.2)
	>20mm	4 (0.9)
Stone composition*	CaOx	186 (40.6)
	CaOx + CaP	107 (23.4)
	CaP/CaHP	8 (1.7)
	UA/UA salt	2 (0.4)
	Cystine	1 (0.2)
	struvite	2 (0.4)
	Unclear	152 (33.2)

Backgrounds of the targeted stones (2) *n (%) **Median(Min-Max)

Skin-to-stone distance** (mm)		90 (25-180)				
CT value** (HU)		817 (107-2250)				
Stagnation period** (months)		3 (0-180)				
Hydronephrosis grade*(SFU classification)						
	Grade 0	266 (58.1)				
	Grade 1	84 (18.3)				
Grade 2		84 (18.3)				
	Grade 3	17 (3.7)				
	Grade 4	5 (1.1)				
	unknown	2 (0.4)				
Indwelling of ureteral s	28 (5.5)					

Backgrounds of the operation

*n (%) **Median(Min-Max)

Shockwave device*	Lithotripte Gemini	r S	232 (50.7) 226 (49.3)					
Shockwave number**	Renal ston Ureter stor		3000 (1762-4000) 4000 (1256-4102)					
Shockwave frequency* (SW numbers/min)								
	≤60		206 (45.0)					
	60<≤90		246 (53.7)					
	>90		2 (0.4)					
	unclear		4 (0.9)					
Number of the SWL sess	sion	1	415 (90.6)					
		2	36 (7.9)					
		3	7 (1.5)					

Therapeutic information

*n (%) **Median(Min-Max)

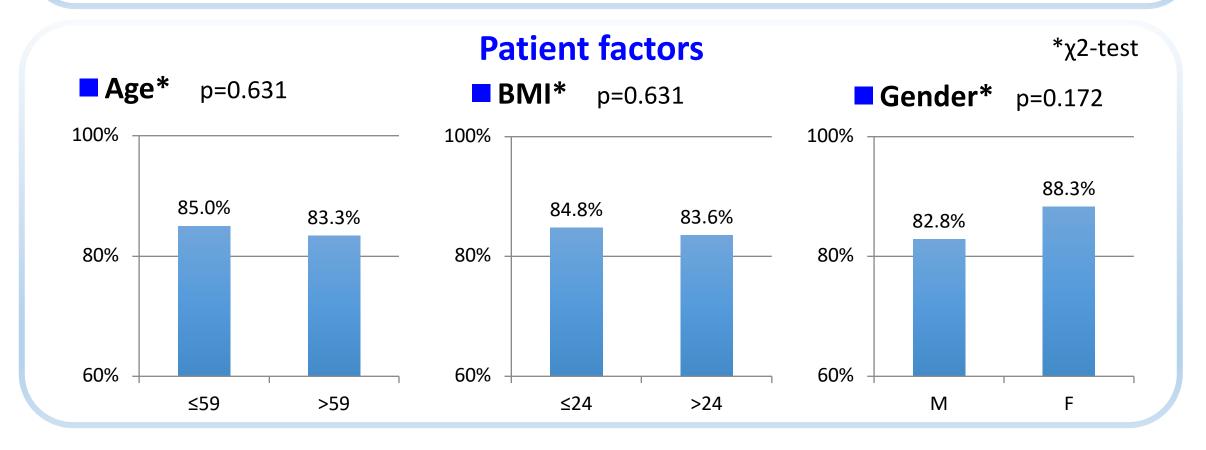
Compliance to the recommended techniques in training*

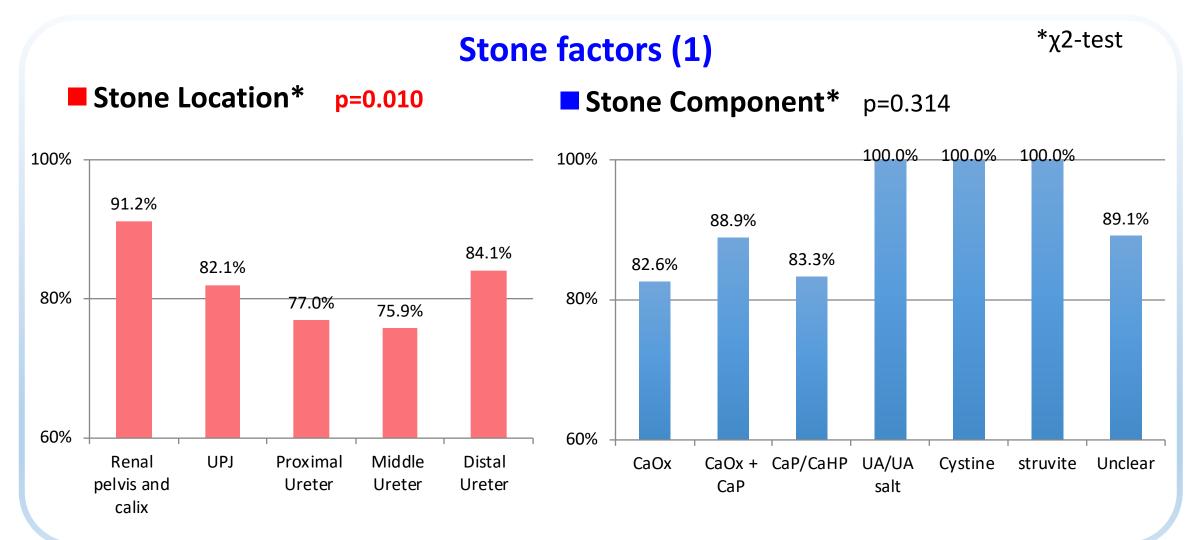
Compliant380 (83.0)Non-compliant78 (17.0)

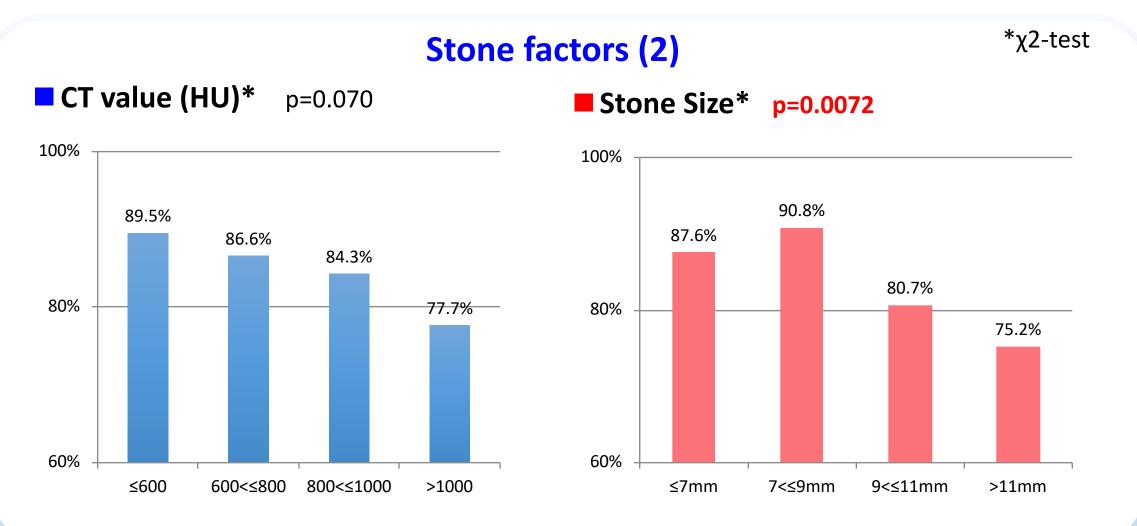
XThe recommended techniques in training ;

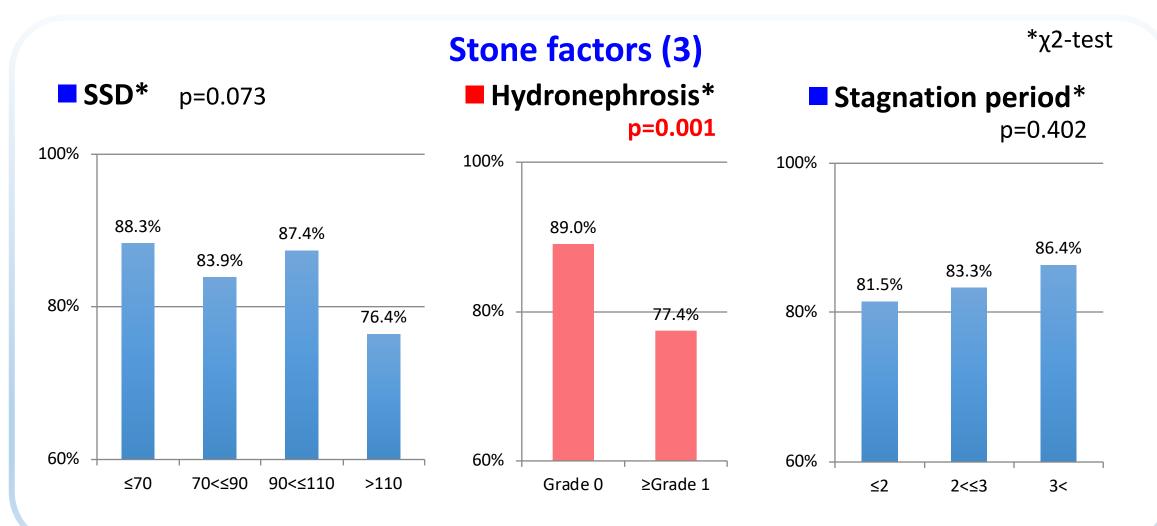
1) Combined use of fluoroscopy and ultrasonography for targeting renal and proximal ureter stones

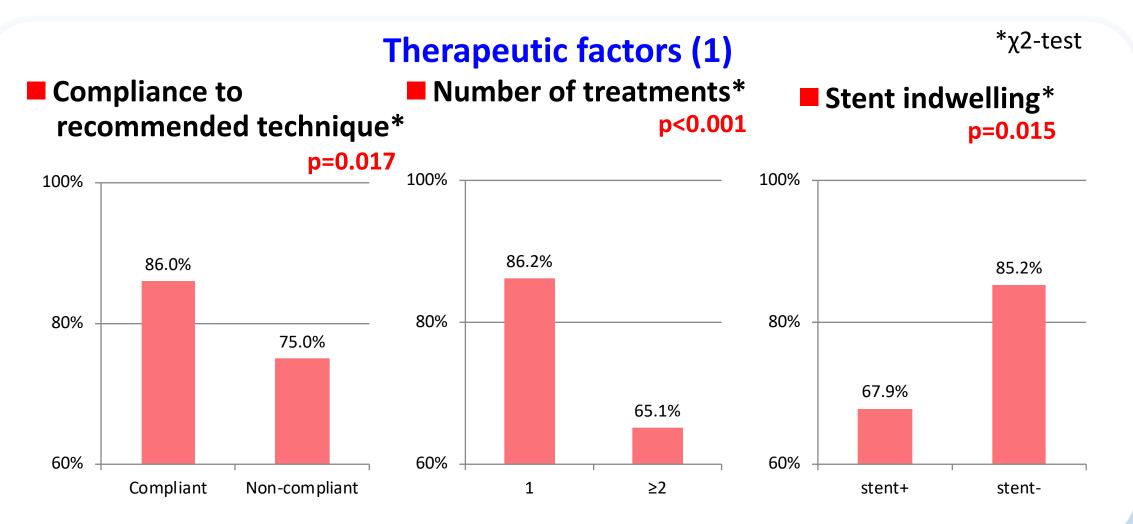
2) Use of stretcher wedges for middle ureter stones

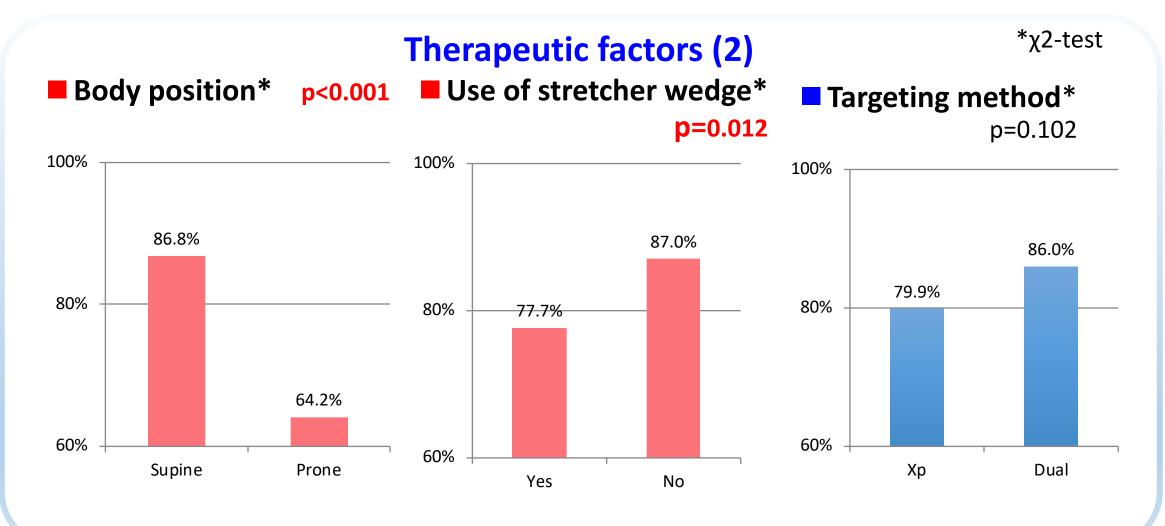

3) semi-supine position with stretcher wedges for distal ureter stones.

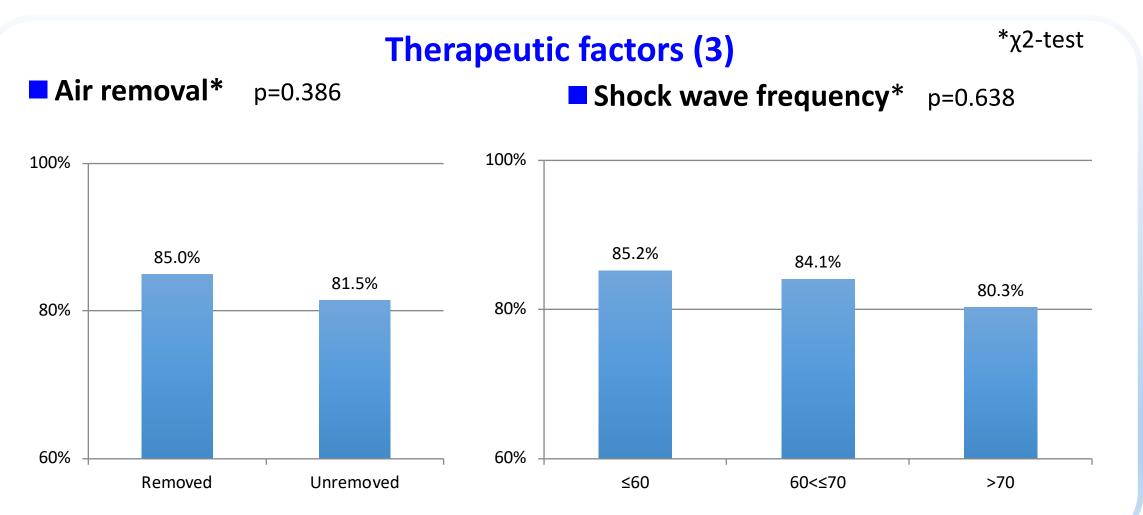

Air-removal between cushion and skin*

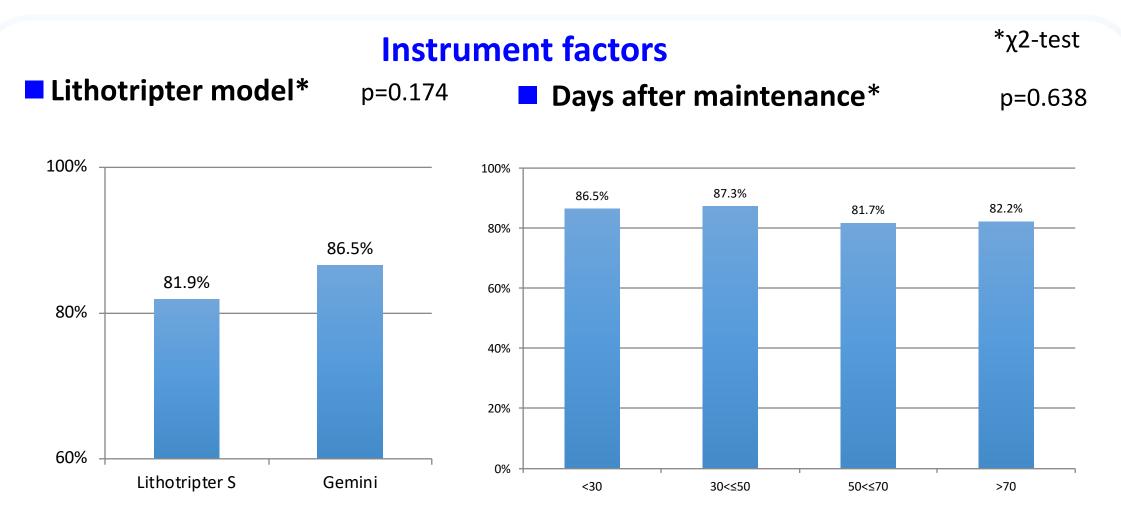

Removed	349 (76.2)
Unremoved	109 (23.8)

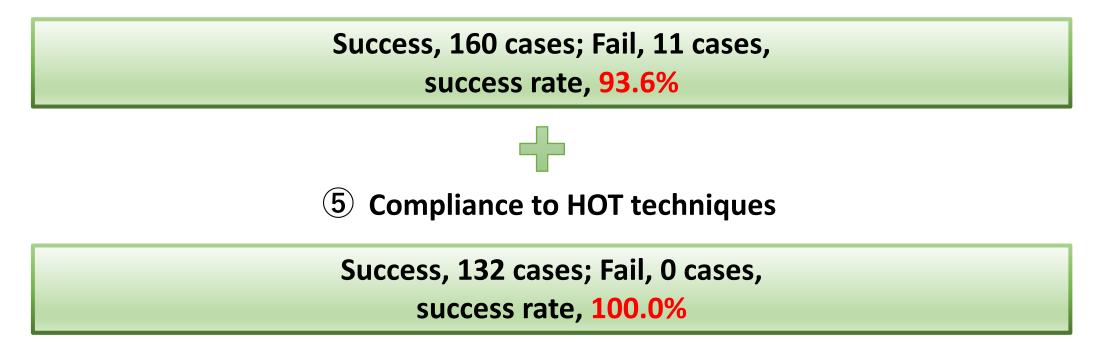

Success rate (stone-free rates after 3 months)


Total* Success 383 (83.6%), Failure 72 (16.4%)








Univariate and Multivariate Analysis for SWL success

				Univariate					Multivariate		
Total		OR		95%CI		p-value	OR		95%CI	p-	-value
Compliance to HOT	Compliant / Non-compliant	1.99	(1.07 - 3.55)	0.028	1.75	(0.90 - 3.31)	0	0.098
Number of Treatment	1/≥2	2.17	(1.29 - 3.74)	0.003	2.64	(1.22 - 5.52)	0	0.014
Stone size (mm)	<9 / ≥9	2.59	(1.39 - 5.00)	0.002	2.17	(1.21 - 4.00)	0	0.010
CT value (HU)	<817 / ≥817	1.74	(1.04 - 2.94)	0.034	1.44	(0.81 - 2.58)	0).216
Hydronephrosis (SFU grades)	G0/≥G1	2.32	(1.40- 3.93)	0.001	1.81	(0.98-3.34)	0	0.056
Stent indwelling	- / +	2.76	(1.14- 6.22)	0.025	4.21	(1.63-10.4)	0	0.004
Body position	Supine / Prone	3.60	(1.89- 6.69)	0.000	2.94	(1.34-6.41)	0	0.007
Stretcher Wedge	- / +	1.90	(1.13- 3.17)	0.016	1.27	(0.67-2.35)	0).466
Renal calyx-pelvis and UPJ	l										
Stone size (mm)	<10 / ≥10	2.53	(1.03 - 6.84)	0.042	1.98	(0.76 - 5.51)	0).162
Stent indwelling	- / +	7.50	(2.04 - 26.01)	0.004	5.79	(1.52 - 20.98)	0	0.012
Proximal ureter											
Number of Treatment	1 / ≥2	3.92	(1.39 - 11.01)	0.010	2.14	(0.66 - 6.79)	0).198
Stone size (mm)	<9 / ≥9	3.59	(1.49 - 9.36)	0.004	5.16	(1.77 - 16.22)	0	0.003
Hydronephrosis (SFU grades)	G0 / ≥G1	4.27	(1.37- 18.82)	0.010	2.69	(0.75-12.83)	0).133
Body position	Supine / Prone	4.11	(1.52- 11.20)	0.006	2.96	(0.68-13.27)	0).146
Stretcher Wedge	- / +	3.00	Ì	1.26- 7.20)	0.013	2.25	(0.69-7.32)	0).177
Middle ureter								•			
Days after maintenance	<58 / ≥58	8.67	(1.20 - 178.90)	0.031					
Distal ureter											
Stagnation period	<3 / ≥3	3.89	(1.20 - 33.15)	0.025					

Discussion

Based on the results, the model success rate was calculated for the extracted treatments that met the following conditions.

① First treatment ② stone size, <9mm ③ Supine treatment ④ No stent

Discussion

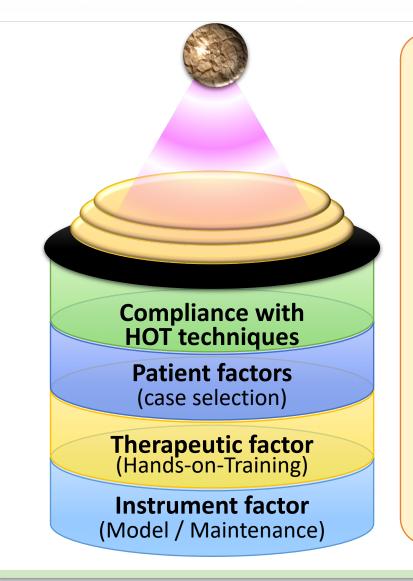
Report on Hands-on-Training for SWL: only 2 reports (Pubmed Search)

- ① Okada et al. Urolithiasis 2013
- ② Sharma NL et al. Urolithiasis 2017

Survey on SWL treatment status at 21 UK facilities

 \rightarrow SWL-HOT is almost unimplemented worldwide

Review of SWL safety


[Surgical mortality for urolithiasis]

(Japanese guideline for urolithiasis clinical practice, 2nd edition)

- URS 0.06% (Sugihara T et al. BJU Int. 2013)
- PNL 0.04% (Seitz C et al. Eur Urol. 2012)
- SWL 0.0% (Few reports)

 \rightarrow Now is the time to re-recognize the minimally invasive properties of SWL

Discussion

Rooting SWL-HOT is expected to greatly improve the success rate.

The implementation of HOT for SWL has not only improved the skills and awareness of surgeons, but has also generated positive interest from manufacturers.

Since the success rate increases by complying with the HOT technique, it was shown that repeated HOT training could contribute to more effective and safe calculus surgery.

Conclusion

- Continuous hands-on training on SWL technique was found to be able to keep the treatment success rate high.
- Appropriate case selection and compliance with HOT technique can dramatically improve SWL success rate.

Special Thanks

Thank you for your attention. a-okada@med.nagoya-cu.ac.jp