

Feasibility and validation of largescale data acquisition from the electronic health record to a secure research database for nephrolithiasis

DEPARTMENT OF UROLOGY

Presenter: Wilson Sui, MD

Disclosures

- none

Introduction: Big data

IBM Watson

aws Google NETFLIX

VANDERBILT VUNIVERSITY MEDICAL CENTER

The six Vs of big data

Big data is a collection of data from various sources, often characterized by what's become known as the 3Vs: *volume, variety and velocity*. Over time, other Vs have been added to descriptions of big data:

and Cons.

VOLUME	VARIETY	VELOCITY	VERACITY	VALUE	VARIABILITY
The amount of data from myriad sources.	The types of data: structured, semi-structured, unstructured.	The speed at which big data is generated.	The degree to which big data can be trusted.	The business value of the data collected.	The ways in which the big data can be used and formatted.
	٤ۣؽ *				

Pros....

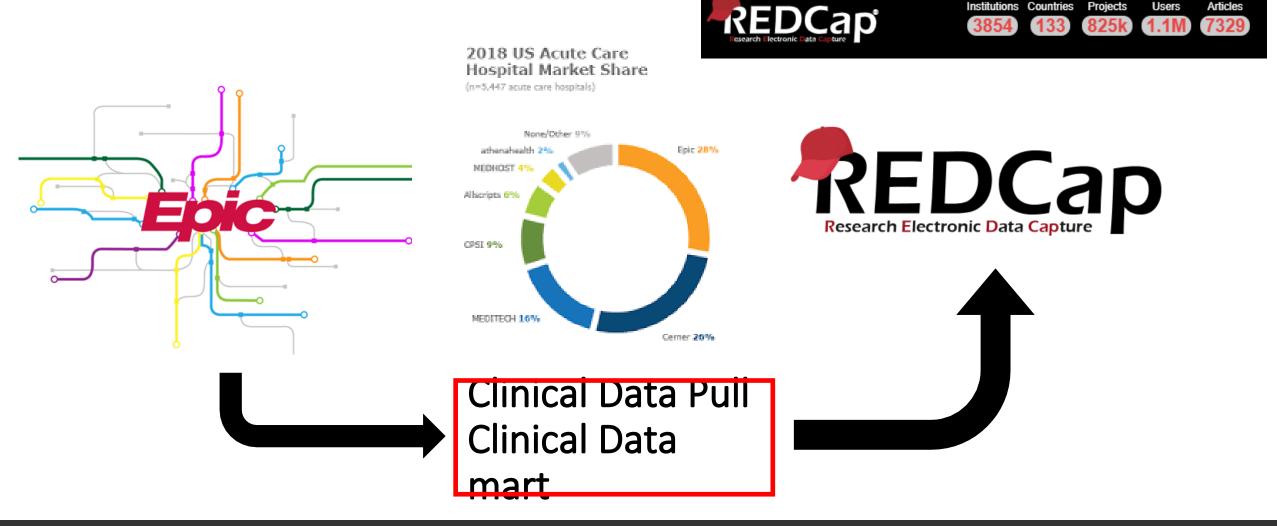
Steps in the typical chart review project

- 1) Identify patients
- 2) Variables
- 3) Extract each datapoint manually
- 4) Log it somewhere
- 5) Database maintenance

Current state of chart review

В	С	D	E	F	G	Н	I
DOB	Sex	HTN	CHF	T2DM	Stone disease?	Location stone	Treatment
11/29/1978	Μ	0	1	1	1	RENAL PELVIS	PCNL
8/29/1999	F	1	0	0	0	0	0
5/4/1940	F	1	1	1	1	URETER	ESWL

Time per patient = number of variables * complexity

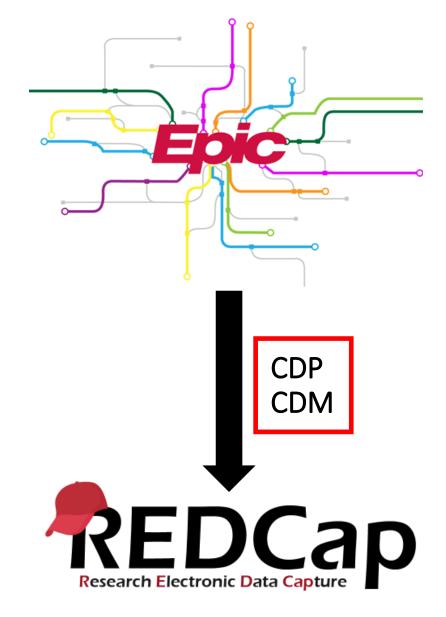


. art review or Present Minds? 4 ftx Nephrolomasis - since 2003 txbx Man Collin txbx Man Collin txbx Man Collin tradent and epizode was Avg 2009 2 1-2 days phydros Buneferslecks Fill pain Now Gost QUTZ two waterscale of pain now Gost QUTZ two waterscale space Nephrolomasis -Not Mericled in UPS/S

VANDERBILT STUNIVERSITY MEDICAL CENTER

The EPIC link: CDP & CDM

VANDERBILT VUNIVERSITY MEDICAL CENTER https://klasresearch.com/resources/blogs/2019/04/30/ushospital-emr-market-share-2019-report



What is CDP & CDM?

Feature to fetch data from EHR

- Manual or automatic
- Able to pull temporal data
- Data fields:
 - Demographics (race, gender, ethnicity, DOB, address, phone
 - Medications (active, completed, on-hold, stopped)
 - \circ Allergies
 - \circ Vitals
 - o Labs
 - Problem list

What have we done so far?

LARGE-SCALE DATA ACQUISITION FROM THE ELECTRONIC HEALTH RECORD TO A SECURE RESEARCH DATABASE FOR NEPHROLITHIASIS: VALIDATION AND CLINICAL APPLICATION

ASSOCIATION OF CHRONIC KIDNEY DISEASE STAGE WITH 24-HOUR URINE VALUES AMONG PATIENTS WITH NEPHROLITHIASIS

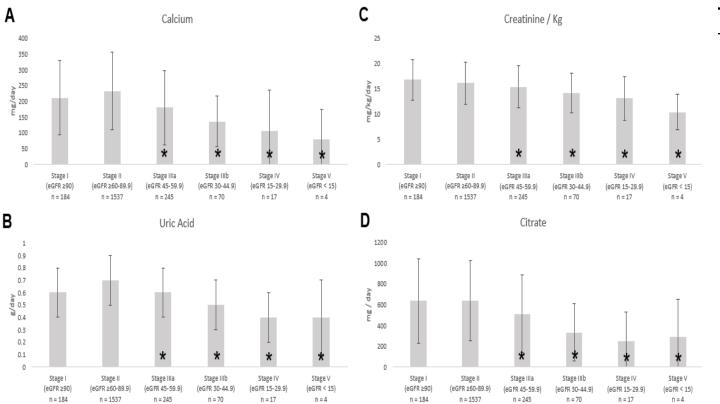
URINARY CITRATE WASTING ASSOCIATES WITH OBESITY AND DIABETES MELLITUS AMONG NEPHROLITHIASIS PATIENTS

MACHINE LEARNING MODELS TO PREDICT KIDNEY STONE COMPOSITION AND 24-HOUR URINE ABNORMALITIES BASED ON ELECTRONIC HEALTH RECORD-DERIVED FEATURES

Validation

- PPV: 92-100%
- NPV: 89-100%
- Average time for manual collection of 5 meds & 5 comorbidities: 29.2 +/-12.7 seconds

ASSOCIATION OF CHRONIC KIDNEY DISEASE STAGE WITH 24-HOUR URINE VALUES AMONG PATIENTS WITH NEPHROLITHIASIS


Table 1. Demographic and clinical characteristics of the study cohort

	Stage I	Stage II	Stage Illa	Stage IIIb	Stage IV	Stage V	
	(eGFR ≥90)	(eGFR ≥60-89.9)	(eGFR 45-59.9)	(eGFR 30-44.9)	(eGFR 15-29.9)	(eGFR < 15)	
	n = 184 (%)	n = 1537	n = 245	n = 70	n = 17	n = 4	p-value
Age (mean ± SD)	44.0 ± 15.1	49.6 ± 14.5	59.8 ± 12.1	63.0 ± 11.2	59.9 ± 14.8	63.0 ± 17.0	<0.001
BMI (mean ± SD)	22.9 ± 28.6	26.2 ± 25.2	26.4 ± 23.9	26.7 ± 22.9	30.2 ± 7.4	31.1 ± 4.8	0.607
Gender							
Male	85 (46.2)	764 (49.7)	133 (54.3)	33 (47.1)	7 (41.2)	2 (50)	0.598
Female	99 (53.8)	773 (50.3)	112 (45.7)	37 (52.9)	10 (58.8)	2 (50)	
Race							
White	163 (91.1)	1381 (93.4)	223 (93.7)	67 (97.1)	17 (100)	3 (75)	0.26
Non-white	16 (8.9)	98 (6.6)	15 (6.3)	2 (2.2)	0 (0)	1 (25)	
Past medical history							
Infammatory bowel disease or Diarrhea	18 (9.8)	127 (8.3)	15 (6.1)	6 (8.6)	2 (11.8)	0 (0)	0.748
Hypertension	72 (39.1)	721 (46.9)	154 (62.9)	49 (70.0)	12 (70.6)	3 (75)	<0.001
Gout	7 (3.8)	41 (2.7)	25 (10.2)	10 (14.3)	1 (5.9)	2 (50)	<0.001
Type 2 diabetes mellitus	23 (12.5)	291 (18.9)	75 (30.6)	26 (37.1)	5 (29.4)	1 (25)	<0.001
Osteoporosis / immobility / hyperparathyroidism	8 (4.3)	76 (5.0)	16 (6.5)	6 (8.6)	3 (17.6)	0 (0)	0.138
Coronary artery disease / myocardial infarction	10 (5.4)	134 (8.7)	31 (12.7)	12 (17.1)	4 (23.5)	1 (25)	0.004
Cerebrovascular accident	7 (3.8)	21 (1.4)	11 (4.5)	7 (10.0)	0 (0)	0 (0)	<0.001
Hyperlipidemia	32 (17.4)	423 (27.5)	88 (35.9)	30 (42.9)	7 (41.2)	2 (50)	<0.001
Gastroesophageal reflux disease	50 (27.2)	532 (34.6)	98 (40.0)	30 (42.9)	6 (35.3)	3 (75)	0.029
Epilepsy/migraine	9 (4.9)	57 (3.7)	5 (2.0)	7 (10.0)	1 (5.9)	0 (0)	0.067
Medications							
Potassium Citrate	13 (7.1)	100 (6.5)	22 (9.0)	4 (5.7)	0 (0)	0 (0)	0.587
Allopurinol	4 (2.2)	45 (2.9)	17 (6.9)	3 (4.3)	0 (0)	1 (25)	0.003
Thiazide (HCTZ, indapamide, chlorthalidone)	25 (13.6)	197 (12.8)	28 (11.4)	4 (5.7)	0 (0)	0 (0)	0.255
Stone comp							0.004
Calcium oxalate monohydrate	67 (54.0)	494 (56.5)	95 (60.5)	26 (52.0)	7 (63.6)	0 (0)	
Calcium oxalate dihydrate	18 (14.5)	117 (13.4)	11 (7.0)	2 (4.0)	1 (9.1)	0 (0)	
Hydroxyapatite	28 (22.6)	159 (18.2)	22 (14.0)	15 (30.0)	0 (0.0)	1 (33.3)	
Uric Acid	3 (2.4)	50 (5.7)	21 (13.4)	5 (10.0)	2 (18.2)	0 (0)	
Other	8 (6.5)	55 (6.3)	8 (5.1)	2 (4.0)	1 (9.1)	0 (0)	

ASSOCIATION OF CHRONIC KIDNEY DISEASE STAGE WITH 24-HOUR URINE VALUES AMONG PATIENTS WITH NEPHROLITHIASIS

Table 3. Multivariable linear regression of 24hour urine analytescontrolling for demographic and clinical factors

all units are per day	β ± S.E.	95% C.I.	p-value				
Volume (L)	0.160 ± 0.732	-1.277 - 1.597	0.827				
Calcium (mg)	0.013 ± 0.005	0.003 - 0.022	0.008				
Oxalate (mg)	0.127 ± 0.038	0.053 - 0.202	0.001				
Citrate (mg)	0.004 ± 0.002	0.001 - 0.007	0.019				
рН	0.968 ± 1.152	-1.295 - 3.231	0.401				
Uric acid (g)	6.631 ± 2.463	1.795 - 11.467	0.007				
Sodium (mmol)	0.012 ± 0.007	-0.002 - 0.026	0.092				
Potassium (mmol)	0.031 ± 0.026	0.021 - 0.083	0.247				
Magnesium (mg)	0.022 ± 0.014	-0.005 0 0.049	0.11				
Phosphorus (g)	3.248 ± 1.576	0.154 - 6.343	0.04				
Ammonium (mmol)	0.105 ± 0.025	0.055 - 1.55	<0.001				
Chloride (mmol)	0.014 ± 0.008	-0.001 - 0.029	0.062				
Sulfate (meq)	0.035 ± 0.036	-0.036 - 0.106	0.333				
Creatinine (mg)	-0.004 ± 0.001	-0.0060.001	0.003				
Creatinine per Kg	0.204 ± 0.144	-0.487 - 0.078	0.155				
SSCaOx	0.646 ± 0.161	0.330 - 0.964	<0.001				
SSUA	-0.474 ± 0.727	-1.901 - 0.952	0.514				
SSCaP	1.415 ± 0.622	0.195 - 2.635	0.023				
Madele editorial for any DML and burgertancies assessment attempt							

Models adjusted for age, BMI, sex, hypertension, coronary artery disease, type 2 diabetes, hyperlipidemia, gastroesophageal reflux disease

Downsides

- TOO much data
- Time limit on lab value import
- Problem list is static
- Relies on coding data
- Availability is limited across institutions

Widely applicable

- Real-time updating of lab values (ex: PSA, tumor markers) and comorbids
- Actively being updated by dedicated staff (CPT codes, radiology?)
- Multi-institutional datasets?

Thank you!

Dr. Hsi Dr. Penson & VUMC Urology The VUMC RedCap team

VANDERBILT VUNIVERSITY MEDICAL CENTER

