

PD39-05: Prevalence and Landscape of Actionable Genomic Alterations in Renal Cell Carcinoma

Kyrollis Attalla, Renzo G. DiNatale, Eduard Reznik, Christopher Fong, Francisco Sanchez-Vega, Andrew W. Silagy, Stanley Weng, Jonathan Coleman, Chung-Han Lee, Maria I. Carlo, Paul Russo, Timothy An-thy Chan, Robert J. Motzer, Nikolaus D. Schultz, Martin H. Voss, A. Ari Hakimi

Introduction

- Actionable genomic alterations include somatic mutations and structural alterations that predict response to targeted therapy
- Defining the landscape of actionable alterations in RCC may identify therapeutic targets and inform targeted therapy trials
- **OBJECTIVE:** describe the prevalence and landscape of actionable alterations and the corresponding evidence supporting the alteration as predictive of response to targeted therapy in RCC

Methods

 Institutional clinical sequencing database queried to include tumor samples sequenced across all cancers

 Actionable alterations with clinical/biologic evidence supporting an association with response to targeted therapy stratified by level of evidence using an oncology knowledge database (OncoKB)¹

¹Chakravarty et al. JCO PO. 2017

OncoKB Workflow

tandard Care

Investigational

FDA-recognized biomarker predictive of response to an FDA-approved drug in this indication

Standard care biomarker recommended by the NCCN or other expert panels predictive of response to an **FDA-approved drug** in this indication

Compelling clinical evidence supports the biomarker as being predictive of response to a drug in this indication

Standard care or investigational biomarker predictive of response to an FDA-approved or investigational drug in another indication

Compelling biological evidence supports the biomarker as being predictive of response to a drug

3B

Hypothetica

Pan-cancer MSK-IMPACT cohort Targetable alterations by cancer type (15 most common)

Targetable alterations in Renal Cell Carcinoma (n=753)

Targetable alterations in RCC

SUMMARY

- The prevalence of actionable alterations in RCC is 12%
- Type of alteration varies by histologic subtype
 - Clear cell RCC → acquired somatic mutations
 - Papillary RCC → copy number variations
 - Chromophobe RCC → MSI/fusion (rare)

NEXT STEPS

- Validation of results (TCGA, TRACERx)
- Clonality of alterations

Acknowledgments

Mentors/Co-authors

- A. Ari Hakimi, MD
- Timothy Chan, MD
- Robert Motzer, MD
- Martin Voss, MD
- Paul Russo, MD
- Jonathan Coleman, MD
- Maria Carlo, MD
- Chung-Han Lee, MD
- Renzo Dinatale, MD

OncoKB Design & Development

- Debyani Chakravarty, PhD
- Jianjiong Gao, PhD
- Sarah Phillips, PhD
- Hongxin Zhang, MSc
- Ritika Kundra, MSc
- Moriah Nissan, PhD
- Jing Su, MSc
- Ederlinda Paraiso, MPA
- Julia Rudolph, MPA
- David Solit, MD
- Paul Sabbatini, MD
- Nikolaus Schultz, PhD

MSK-IMPACT/Diagnostic Molecular Pathology Lab

- Maria E. Arcila, MD
- Ryma Benayed, MD
- Michael Berger, MD
- Marc Ladanyi, MD
- Khedoudja Nafa, MD
- Ahmet Zehir, MD
- Liying Zhang, MD
- Christine England

Research Coordinator

Samuel Murray

We wish to thank our patients, their families, and their caregivers

This work was funded in part by the Marie-Josée and Henry R. Kravis Center for Molecular Oncology and the National Cancer Institute Cancer Center Core Grant No. P30-CA008748

