

Background

- Management of urothelial carcinoma (UC) is expensive
 - High recurrence rate, long disease course, intensive surveillance strategies
- Urine cytology is a noninvasive and cost-effective screening/ diagnostic test
 - Surveillance intervals and hematuria workups
- Urine cytology diagnostic classification: a long journey
 - None had gained wide acceptance: lack of standard terminology and diagnostic criteria
 - A variety of terminologies are currently utilized in different pathology labs
 - High percentage of indeterminate (atypical) diagnosis: may lead to unnecessary procedures

The Paris System (TPS) for Reporting Urine Cytology

- 2013 International Cytology Congress in Paris: recognized the need to standardize terminology and reporting
- TPS was developed, presented in conferences and published in 2016
- Advantages:
 - More definite morphological and numerical diagnostic criteria
 - Aims to improve sensitivity and specificity in detecting high-grade UC (HGUC)
 - Decrease indeterminate/atypical diagnosis

The Paris System (TPS) for Reporting Urine Cytology

- Unsatisfactory
- NHGUC (negative for high-grade UC)
- AUC (atypical urothelial cells): N/C ratio > 0.5 + one of the following-
 - Hyperchromasia/Irregular clumpy chromatin/Irregular nuclear contours
- SHGUC (suspicious for HGUC): N/C ratio > 0.7 <10 abnormal cells
 - · Hyperchromasia + one of the following
 - Irregular clumpy chromatin/Irregular nuclear membranes
- **HGUC** (high-grade UC):

N/C ratio > 0.7 >5-10 abnormal cells

- Similar to SHGUC
- LGUN (low-grade urothelial neoplasm): papilloma, PUNLMP, LGUC
- Other malignancies

Pre-TPS terminology

NUC (negative for UC)

AUC, included MAUC (Mildly atypical urothelial cells, favor reactive changes)

Aim

 To study the impact of TPS on the urine cytology diagnostic patterns in our high-volume community practice.

 Introduce TPS to urologists and demonstrate its potential impact on urological practices.

Methods

Pre-TPS	Learning Period	Post-TPS
Jan 2013 to Dec 2014 (two years, 7,658 cases)	 Jan 2015 - April 2016 Initial grand rounds presentation Change terminology Daily pathology consensus conference Urine cytology case conference /2 wk. 	May 2016 to April 2018 (two years, 20,027 cases)

- The comparison was made between Pre- and Post-TPS diagnostic categories and different collection methods
- Each diagnostic category was correlated with UroVysion results

Results

Table 1. Urine cytology diagnostic categories Pre- and Post-TPS

Diagnosis	Pre-TPS		Post-TPS		P Value	
Diagnosis	n	%	n	%	P value	
NUC/NHGUC	5,293	69.2%	18,507	92.4%	<0.00001	
AUC (MAUC)	2,227 (1,437)	29% (65% of AUC)	1,237	6.2%	<0.00001	
SHGUC/HGUC	138	1.8%	282	1.4%	0.0057	
Total	7,658	100%	20,026	100%		

Table 2. Diagnostic categories in voided vs instrumented urine in Pre- and Post-TPS

Collection method	Voided Urine n (%)		Instrumented urine n (%)		
Diagnosis	Pre-TPS	Post-TPS	Pre-TPS	Post-TPS	
NUC/NHGUC	71.5%	92.7%	60.9%	88.5%	
AUC	26.9%	6%	36.6%	9.1%	
SHGUC/HGUC	1.6%	1.3%	2.5%	2.4%	
Total %	100%	100%	100%	100%	
Total n	5,951	18,877	1,707	1,149	

Table 3. AUC Rate Among Pathologists Pre- and Post-TPS

Pathologists	A	В	С	D	E	Average
Pre-TPS AUC %	24	26	37	39	23	29
Post-TPS AUC %	5.8	5.3	7.2	N/A	6.4	6.2

All pathologists showed significant decreases in AUC (P<0.00001) with less interobserver variation (23-39% vs 5.3-7.2%)

Figure 1. Urine Cytology Diagnosis Demonstrated Superior Correlation with UroVysion Results in Post-TPS

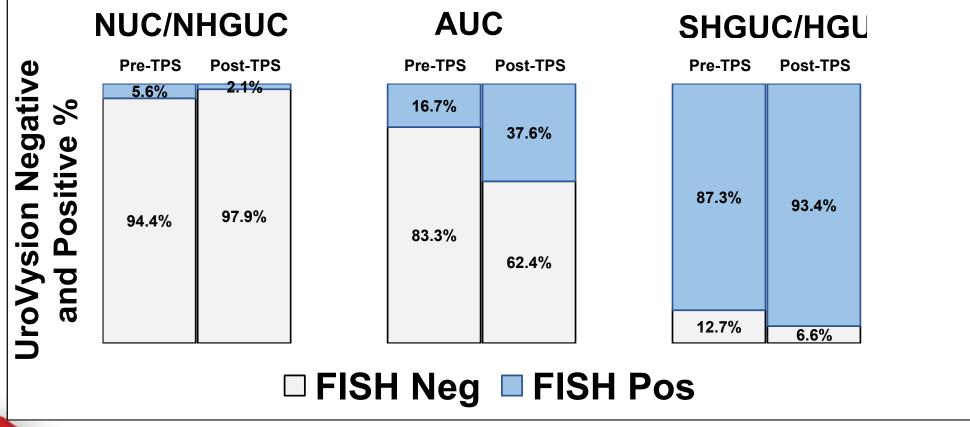


Table 4. Utilization of UroVysion test was significantly decreased Post-TPS for AUC category

AUC with UroVysion	Pre-TPS	Post-TPS
Total urine cytology	7,658	20,026
AUC n (atypical rate)	2,227 (29%)	1,237 (6.2%)
AUC with UroVysion n	980	550

Presumptive: UroVysion requests in AUC if we didn't implement TPS: 20,026 cases x 29% atypical rate x 44% requests in AUC= 2,555 UroVysion tests Compared to 550 → a significant decrease in UroVysion requests and medical cost

Conclusion

- Implementation of TPS resulted in a significant decrease in atypical diagnoses with less interobserver variation.
- AUC was significantly better correlated with UroVysion results
 - Decreased UroVysion requests
 - Saved medical cost
- AUC should be considered a clinically relevant group, and requires more serious clinical workup in the TPS era.

References

- 1. Rosenthal, DL, Wojcik, E, Kurtycz, DF. *The Paris System for Reporting Urinary Cytology*. (1st edition) New York: Springer; 2015.
- 2. Cowan ML, VandenBussche CJ. The Paris System for Reporting Urinary Cytology: early review of the literature reveals successes and rare shortcomings. *J Am Soc Cytopathol.* 2018 Jul Aug; 7(4):185-194.
- 3. Miki Y, Neat M, Chandra A. Application of The Paris System to atypical urine cytology samples: correlation with histology and UroVysion[®] FISH. *Cytopathology*. 2017 Apr;28(2):88-95.
- 4. Brimo F, Vollmer RT et al. Accuracy of urine cytology and the significance of an atypical category. *Am J Clin Pathol.* 2009 Nov;132(5):785-93.

Contact Information

Wei Tian, M. D.

Medical Director, Urologic Pathology

Inform Diagnostics

6655 N MacArthur Blvd, Irving, TX 75039

wei.tian@informdx.com

www.InformDx.com

https://www.linkedin.com/in/wei-tian-238467192/

