Clinical significance of the Siaα2,3Galglycosylated Prostate-Specific Antigen Assay for prostate cancer detection

Tohru Yoneyama^{1,2,*}, Yuki Tobisawa², Tomokazu Ishikawa², Shingo Hatakeyama², Kazuyuki Mori², Mihoko Sutoh Yoneyama⁴, Teppei Okubo⁵, Koji Mitsuzuka⁵, Wilhelmina Duivenvoorden⁶, Jehonathan H. Pinthus⁶, Yasuhiro Hashimoto², Akihiro Ito⁵, Takuya Koie⁷, Mutsuhiro Date³, Robert A. Gardiner⁸, and Chikara Ohyama^{1,2}

¹Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
²Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
³Diagnostics Research Laboratories, Fujifilm-Wako Pure chemical corporation, Hyogo, Japan
⁴Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Japan.
⁵Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan.
⁶Department of Surgery, McMaster University, Hamilton, Canada.
⁷Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan.
⁸University of Queensland Centre for Clinical Research (UQCCR), Level 6, Building 71/918 Royal Brisbane Hospital, Herston, Australia,

Conflict of Interest Disclosure

I have no potential conflict of interest to report

Background & Objective:

To reduce unnecessary prostate biopsies, better discrimination is needed.

We previously established a microfluidic capillary electrophoresis-based immunoassay system to detect PC-associated terminal Siaα2,3Gal-glycosylated prostate-specific antigen in serum^{1, 2}.

Ref1.Yoneyama et al. *BBRC*, **448**: 390, 2014 Ref 2.Ishikawa et al. *Int .J. Mol. Sci.*, **18**, E470, 2017

Background & Objective:

Training cohort study

%S2,3PSA test may improve the accuracy of prostate cancer diagnosis in clinical setting.

The aim of this study to compare the diagnostic performance between S2,3PSA test and PSA based testing in validation cohort.

Ishikawa et al. Int .J. Mol. Sci., 18, E470, 2017

Design, Setting, and participants of Pbx cohort:

Serum before Pbx PSA < 50 ng/mL (n=349) Hirosaki U., Tohoku U., McMaster U.					
¥					
Pbx negative	Pbx positive				
(n= 153)	ASPC (n= 30)				
	SigPC (n= 166)				
PSA, F/T PSA, PSAD, S2,3PSA test					

Biopsy outcome	negativeª	ASPC⁵	SigPC°		p Value	
All (n = 349)	(n = 152)	(n = 30)	(n = 166)	a vs b	a vs c	b vs c
Median age (IQR)	67 (62.0–74.0)	66.5 (63.0–73.3)	67 (63.0–73.0)	0.992	0.509	0.701
DRE status normal/abnormal	138/14	24/6	105/61	0.041	<0.0001	0.167
Median P vol cm ³ (IQR)	42.8 (30.3–55.8)	42.8 (33.5–50.0)	26.3 (20.1–36.1)	0.781	<0.0001	<0.0001
Median tPSA ng/mL (IQR)	6.90 (4.85–10.30)	4.63 (3.80–5.93)	8.36 (5.78–13.11)	<0.0001	<0.0001	<0.0001
Median F/T PSA % (IQR)	28.3 (19.3–38.1)	19.5 (15.4–37.4)	18.3 (12.6–26.8)	0.042	<0.0001	<0.0001
Median PSAD ng/mL/cm3 (IQR)	0.17 (0.10–0.25)	0.11 (0.09–0.16)	0.36 (0.22–0.66)	<0.0001	<0.0001	<0.0001
Median S2,3PSA % (IQR)	38.3 (32.4–43.0)	42.4 (36.5–50.9)	47.3 (42.0–53.9)	0.003	<0.0001	0.003
Median S2,3PSAD %/cm3 (IQR)	0.91 (0.67–1.20)	1.03 (0.72–1.42)	1.76 (1.27–2.49)	0.208	<0.0001	<0.0001
Clinical T stage		n (%)	n (%)			
1c		24 (80)	95 (57.2)			
2a		5 (26.6)	27 (16.3)			
2b		1 (3.3)	15 (9.0)			
2c-3		0(0)	29 (17.4)			
prostate biopsy GS sum		n (%)	n (%)			
GS 6		30 (100)	14 (8.4)			
GS 7		0(0)	87 (52.4)			
GS 8		0(0)	26 (15.7)			
GS 9		0(0)	39 (23.5)			

Diagnostic performance of overall, SigPC detection ROC & DCA analyses

ASPC: Active surveillance eligible PC by PRIAS criteria SigPC: non-ASPC

The assays were retrospectively evaluated using the AUC of ROC analysis and DCA analysis to discriminate overall PC, SigPC

Violin plot in Pbx cohort

Serum level of S2,3PSA was increased in overall PC.
Serum level of S2,3PSAD was significantly increased in SigPC.

ROC analysis in Pbx cohort

S2,3PSAD had the largest AUC (0.7953 for overall PC) (0.8274 for SigPC)

and provided significantly better clinical performance for discriminating overall PC & SigPC compared with conventional test.

NPV, PPV & Specificity @ 90 sensitivity in Pbx cohort

Overall PC detection	tPSA	F/T PSA	PSAD	S2,3PSA	S2,3PSAD
Cut-off	4.38 ng/mL	41.90%	0.095 ng/mL/cm3	35.90%	0.825 %/cm ³
AUC; p (vs LDN-PSAD)	0.5518 ; p <0.0001	0.6894 ; p <0.0001	0.6843 ; p <0.0001	0.7802 ; p = 0.0026	0.7953
PPV, %	57.1	59.4	58.1	63.9	67.7
NPV, %	53.8	64.8	61.4	73.7	78.0
Specificity, %	18.4	23.0	17.8	36.8	46.7
SigPC detection	tPSA	F/T PSA	PSAD	S2,3PSA	S2,3PSAD
Cut-off	4.58 ng/mL	41.90%	0.135 ng/mL/cm3	37.20%	0.975 %/cm ³
AUC; p (vs LDN-PSAD)	0.6418 ; p <0.0001	0.6860 ; p <0.0001	0.7870 ; p <0.0001	0.7779 ; p = 0.0026	0.8247
PPV, %	52.3	51.0	58.4	59.3	65.0
NPV, %	72.1	68.5	82.8	81.9	84.0
Specificity, %	24.7	20.8	40.4	43.3	56.2

S2,3PSA(D) provided significantly better NPV and PPV for discriminating overall PC & SigPC compared with conventional test.

Decision curve analysis in Pbx cohort

Decision curve analysis in Pbx cohort

		Risk threshold (%) of overall cohort				t
Pbx avoided per 100 patients w/o missing overall PC	10	15	20	25	30	35
Base model	0.3	0.6	0.0	0.0	-0.3	-0.1
Base+ P vol.	-6.3	-2.8	-2.3	1.7	2.1	6.8
Base+ PSAD	-1.4	-0.7	-0.3	-1.4	2.9	7.8
Base+ S2,3PSA	-4.3	-3.9	-2.3	3.7	8.0	10.5
Base+ P vol.+ S2,3PSA	-6.0	-3.6	-2.6	2.3	6.8	12.0
Base+ S2,3PSAD	0.0	1.1	0.9	2.6	7.6	9.0
Pbx avoided per 100 patients w/o missing SigPC	10	15	20	25	30	35
Base model	-0.9	1.4	0.9	2.3	9.4	14.6
Base+ P vol.	-6.0	-0.6	6.9	12.9	17.7	19.6
Base+ PSAD	-0.6	7.5	11.7	14.0	15.9	19.9
Base+ S2,3PSA	2.0	4.1	12.3	16.6	20.3	23.7
Base+ P vol.+ S2,3PSA	4.0	6.6	4.9	13.2	18.6	23.4
Base+ S2,3PSAD	-2.9	2.0	10.0	11.2	17.7	22.3
$\mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} \mathbf{D} \mathbf{D}_{\mathbf{D}} \mathbf{D}_{D$		1		/		J

> Base (age, DRE, tPSA, F/T) + S2,3PSA is the best option ≥ 25 % risk threshold.

Adding S2,3PSA & S2,3PSAD to the base model permitted avoidance of even more biopsies w/o missing overall & SigPC.

Conclusion:

The diagnostic performance of S2,3PSA(D) is significantly better than the PSA, FT/ PSA & PSAD test in identifying patients with overall PC and SigPC.

Addition of S2,3PSA test to conventional diagnostic model significantly improve avoidable biopsy effect in identifying patients with overall PC and sigPC.