

PD61-01 WATER VS WATER II: TWO YEAR COMPARISON OF AQUABLATION THERAPY FOR BENIGN PROSTATIC HYPERPLASIA

David-Dan Nguyen*, Kevin C. Zorn, Dean S. Elterman, Naeem Bhojani

Aquablation Therapy

BPH Surgery Reimagined

Clarity

Consistency

Control

(Ultrasound and Articulating Arms not pictured)

The Aquablation Robotic Solution

MULTI-DIMENSIONAL IMAGING

- Improved decision making
- Personalized treatment planning

Enhanced Information & Data Integration

Cystoscopic Visualization

Ultrasound Visualization

AUTONOMOUS TISSUE REMOVAL

- Autonomous execution
- Precision and accuracy
- Tissue Removal

Personalized, Patient-specific Surgical Standardization

CAVITATING WATERJET

- Tissue-selective
- Eliminates thermal complications

Tissue-selective Cavitation

Optimal tissue removal plan for each patient

Aquablation FDA Clinical Trials

THE *ONLY* FDA PIVOTAL STUDY RANDOMIZED TO TURP

(GOLD STANDARD)

- Prostates 30 80 mL
- N = 181 (Aguablation therapy = 116, TURP = 65)
- 17 sites in the United States, UK, Australia & New Zealand (14 sites: no prior experience with Aquablation therapy)

RESULTS: Superior safety & non-inferior efficacy compared to TURP

THE ONLY PROSPECTIVE MULTICENTER STUDY SUCCESSFULLY COMPLETED FOR LARGE PROSTATES

- Prostates 80 150 mL
- N = 101
- 16 sites in the United States and Canada
 (9 sites: no prior experience with Aquablation therapy)

RESULTS: Safe & effective in larger prostates, without significant increase in procedure or resection time

Baseline Characteristics

	WATER (n=116)		WATER II (n=101)		
	Mean	SD	Mean	SD	P value
Age	65.9	7.3	67.5	6.6	0.0854
ВМІ	28.4	4.1	28.3	4.1	0.8232
IPSS	22.9	6.0	23.2	6.3	0.6930
Prostate volume, mL	54.1 range (25-80)	16.3	107.4 range (80-150)	20.2	<0.0001
PSA, ng/mL	3.7	3.0	7.1	5.9	<0.0001
Qmax, mL/sec	9.4	3.0	8.7	3.4	0.111
MSHQ-EjD	8.1	3.7	8.1	3.9	0.9160
IIEF-5 (SHIM)	17.2	6.5	15.1	7.4	0.0500

Procedure Outcomes

	WATER (n=116)		WATER II (n=101)		
	Mean	SD	Mean	SD	P value
TRUS in to Cath in (min)	39.7	15.2	54.5	19.2	<0.0001
Resection Time (min)	3.9	1.4	8	3.2	<0.0001
Number of passes	1.1	0.3	1.8	0.6	<0.0001
Catheter days	2	2.3	3.9	3.6	<0.0001
Hospital length of stay (days)	1.4	0.7	1.6	1.0	0.0868
Hemoglobin at discharge	13.0	1.7	11.9	2.2	<0.0001

Safety Endpoint

OTHER NOTABLE SAFETY RATES	WATER (n=116)	WATER II (n=101)	
Incontinence	0%	2% de novo	
Erectile dysfunction	0%	0%	
Ejaculatory dysfunction	10%	19%	
Perioperative Transfusion	0.9%	5.9%	
D/C to Day 30 Transfusion	0%	4.0%	

^{1.} CD grade definitions: CD1P (ejaculatory dysfunction, incontinence), CD2 (requiring pharmacological treatment, blood transfusions), CD3 (endoscopic or surgical interventions), CD4 (complications requiring ICU management)

New Hemostasis Method: Focal Bladder Neck Cautery

BPH Symptom Improvement

Uroflow: Qmax & PVR

Durability at 2-Years

Limitations

We did not directly compare Aquablation to volume independent surgical alternatives, such as HoLEP and PVP.

With only a 36-month follow-up for WATER and 24-month follow-up for WATER II, longer-term follow-up data from these cohorts are needed to demonstrate the durability of the treatment outcomes.

Conclusion

First comparison of
2-year data from two
prospective Aquablation
clinical studies, comparing
prostates
< 80 mL vs. > 80 mL

- Aquablation therapy clinically normalizes outcomes among patients regardless of prostate size or shape
- Symptom improvement and flow rates were consistent in both studies with durable results out to two years
- Retreatment rates were low and similar across studies