

IN VITRO MODEL

Easy, replicable, repeated testing No need for tissue handling

Existing in vitro kidney models are modest, anatomically unrealistic, and cannot replicate in vivo IPPs

4

Endourology)

GOAL: Can we create an anatomically accurate *in vitro* kidney model that can permit intrarenal navigation with URS while replicating in vivo IPPs?

Development and Validation of an *in vitro* Kidney Model for Measuring **Intrapelvic Pressure During Ureteroscopy**

Anuj U Patel¹, Ali H Aldoukhi¹, Sami Majdalany¹, Jeffrey Plott², Khurshid R Ghani¹ ¹ Division of Endourology, Department of Urology, University of Michigan, Ann Arbor, MI ² Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI

METHODS of

An anatomic kidney model that permits intrarenal (1)navigation was acquired (Simagine Health, WA). Ureteroscopic view of model's intrarenal architecture

Model Modifications:

Tuohy-Borst valve inserted into renal pelvis

Model Calibration

- Under 200 cmH₂O irrigation, the kidney filled completely with fluid
- 4 which is the reported in vivo human IPP at this irrigation.
- **IPP** Measurement:
- through the ureter to the renal pelvis without, and with 11/13F or 13/15F)
- automated system (Rocamed), IPP was measured in the following manner: 10 s baseline, 180 s irrigation ON, 60 s irrigation OFF

CONCLUSIONS

An anatomically accurate in vitro kidney model can simulate in vivo IPP trends and can be calibrated by controlling fluid outflow

Sealed distal ureter with silicone to make fluid-tight

With the kidney under 200 cmH2O irrigation pressure, the Tuohy-Borst valve was adjusted to allow fluid to leak in order to reach a steady-state IPP of 54 cmH₂O,

With or without a ureteral access sheaths (UAS): A Cobra URS was placed

Irrigation pressure: Under 61, 102, 153, and 193 cmH₂O irrigation pressure using an

This model replicated human in vivo and porcine ex vivo IPP profiles in different irrigation and UAS conditions

IMPLICATIONS

This model can serve as a tool for bench testing of technologies aimed at studying and mitigating rises in IPP