MP19-02 Deep learning using preoperative MRI information to predict early recovery of urinary continence after robot-assisted radical prostatectomy.

Makoto Sumitomo^{1, 2}, Atsushi Teramoto³, Ryo Toda³, Naohiko Fukami¹, Kosuke Fukaya¹, Kenji Zennami^{1, 2}, Manabu Ichino¹, Kiyoshi Takahara¹, Mamoru Kusaka¹, Ryoichi Shiroki¹ ¹Fujita Cancer Center, Fujita Health University, ²Department of Urology School of Medicine, Fujita Health University, ³Faculty of Radiological Technology, School of Medical Sciences, Fujita Health University

Introduction

Urinary incontinence (UI) remains a severe complication after robotassisted radical prostatectomy (RARP), but there is no system to precisely predict the risk of post-prostatectomy UI (PPUI). We investigated whether deep learning (DL) model from magnetic resonance imaging (MRI) information is an accurate method to predict the risk of UI after RARP.

Patients and Methods

- Patients inclusion criteria: We identified 561 patients who underwent RARP at Fujita Health University Hospital from August 2015 to July 2019. Patients who did not match the fat suppression condition and who have the image quality problem such as low resolution and blurring as several patients underwent MRI at different institutes were excluded before starting data analyses, leaving
- 2. RARP procedure: RARP was done by nine surgeons with the da Vinci Si or Xi system Surgical, Inc., Sunnyvale, CA, USA). Nerve-sparing (NS) was basically conducted according to the clinical stage and risk criteria, and bladder neck preservation was included on a
- Continence definition: Patients using 0 or 1 pad (for less than 20 g incontinence) /day within 3 months after RARP were categorized into the "good" group, whereas the other patients into the
- 4. Preoperative and intraoperative parameters: Preoperative clinicopathological covariates such as age, BMI, NADT history, MUL, PV, continence status before RARP, serum prostate-specific antigen (PSA) level, Gleason score (GS sum), clinical stage, and risk criteria based on the risk stratification in the European Association of Urology guidelines, and intraoperative covariates, such as operator experience, total operation time, console time, with or without NS, and bleeding volume, were assessed. We considered surgeons with more than 50 cases of RARP experience as experts, whereas the others were non-expert.
- 5. MRI: DICOM data of preoperative T2-weighted MRI without fat suppression were collected. We selected one imaging slice showing the maximal diameter of the prostate from the axial and coronal planes and that showing the membranous urethra from the sagittal plane per patient. MUL, defined as the distance from the prostatic apex to the level of the urethra at the penile bulb, was measured in a blinded manner by two experts.
- 6. DL model: Automated classification method of the early recovery of urinary continence is shown in Figure 1. MR images were input to pretrained VGG-16, and 4096 output values of the last convolutional layer were extracted as characteristic features. Thirty types of features that contribute to classification were selected using information gain, used for feature selection in multivariate analysis and machine learning. The selected image features and preoperative and intraoperative parameters were given to a plurality of ML algorithms to distinguish between good and bad urinary
- nvestigation of DL models using Grad-CAM: DL (CNN) is a black box, and determining the employed image features based only on the judgment result is difficult. Selvaraju et al. proposed the gradient-weighted class activation mapping (Grad-CAM) to produce visual explanations of decisions made by CNN-based models.
- 8. Statistical analyses: Statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria) [18]. The Mann-Whitney test and chi-square test were employed to compare the data between continent and incontinent patients. Multivariate logistic regression analyses were used to examine variables associated with postoperative continence. A p-value of less than 0.05 was considered significant.

Conclusions

We showed that DL algorithm using MRI could improve the accuracy for predicting the risk of PPUI than ML using conventional clinicopathological parameters. DL predictions may help in allocating treatment strategies for PC patients who dislike prolonged UI after PARP.

Discussion

- 1. This study is the first to report that a DL model using MRI could provide better information than simple ML using conventional clinicopathological parameters such as BMI and
- 2. Our results provide some advantages to compare with results form past studies because of the following reasons: First, data from the DL algorithms are not affected by human judgment and can be more objective and reliable than direct MRI measurement performed and confirmed blindly by humans. Second, our results provided better results on AUC and specificity, which increased over 15% and 20% better on DL using MRI, respectively, than on those using conventional clinicopathological parameters including MUL and BMI.
- 3. Our preliminary results by Grad-CAM methods may highlight the importance of continuous physical training for improving early continence recovery.
- 4. Our prediction model is rudimentary in the present version in which only one axial MRI slice was used. In the future, the development of the method using multiple slices will be desired.
- 5. There may remain biases from many surgeons with different robotic experience and skills for evaluating intraoperative parameters. Our results showing that the accuracy of UI recovery prediction remained around 70% suggest the possibility that approximately 30% of PPUI may be caused by other factors, including intraoperative parameters.

References

- [1] Di Pierro GB, et al. Eur Urol. 2011;59:1-6.
- [2] Ficarra V, et al. Eur Urol. 2012;62:405-17.
- [3] Krambeck AE, et al. BJU Int. 2009;103:448-53.
- [4] Averbeck MA, et al. Neurourol Urodyn. 2019;38:398-406.
- [5] Heesakkers J, et al. Eur Urol. 2017;71:936-44.
- [6] Shao IH, et al. J Int Med Res. 2018;46:421-9.
- [7] LeCun Y, et al. Nature. 2015;521:436-44.
- [8] Kooi T et al. Med Image Anal. 2017;35:303-12.
- [9] Cheng JZ et al. Sci Rep. 2016;6:24454.
- [10] Teramoto A, et al. Biomed Res Int. 2017;2017:4067832.
- [11] von Bodman C, et al. J Urol. 2012;187:945-50.
- [12] Krizhevsky A SI, et al. Adv Neural Inf Process Syst 2012:1106–14.
- [13] Fujita H. et al. 2020; doi:10.1007/s12194-019-00552-4.
- [14] Simonyan K ZA, 2015. arXiv:1409.1556.
- [15] Deng J, et al. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, . 2009, pp. 248-255.
- [16] Kullback S LR. 1951;22(1):79-86. doi:10.1214/aoms/1177729694.
- [17] Selvaraju RR CM, ICCV. 2017. p. 618–26. https://doi.org/10. 1109/ICCV.2017.74. [18] Kanda Y. Bone Marrow Transplant. 2013;48:452-8.

Figure 1. Automated classification method of the early recovery of urinary continence

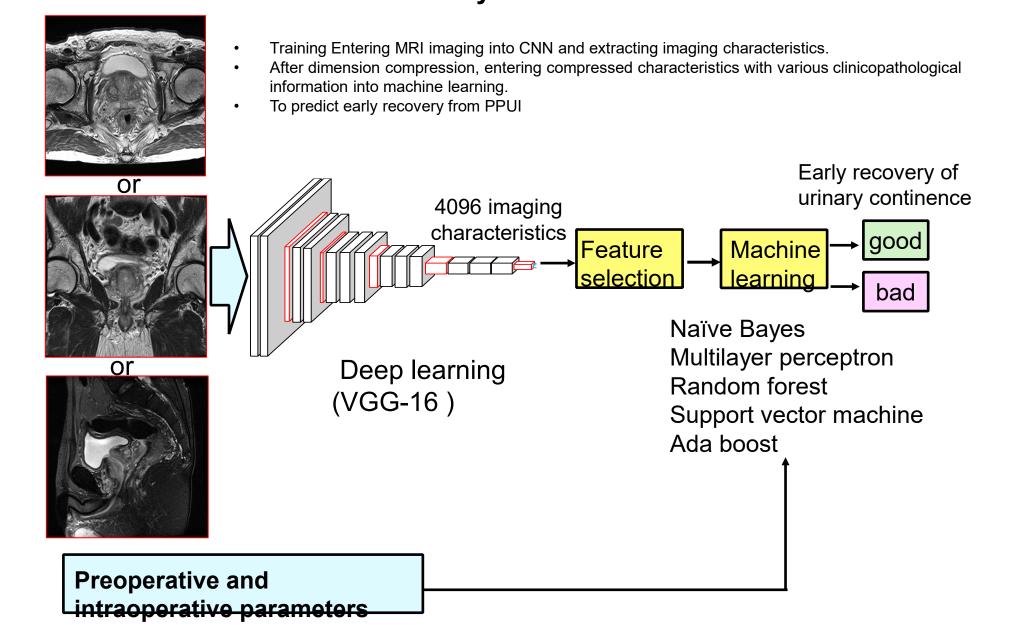


Figure 2. Kaplan-Meier curve showing PPUI recovery in 400 patients

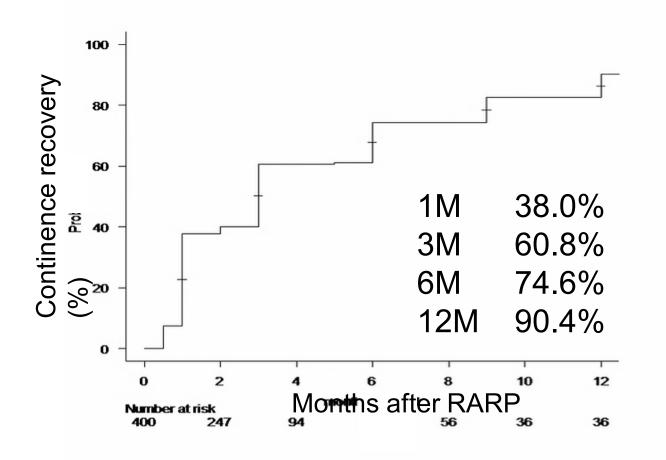


Table 1. Comparison of characteristics between good and bad groups on urinary continence 3 months after RARP.

	Good group (n = 246)	Bad group (n = 154)	<i>p</i> -value
Median Age, years (IQR)	67 (63.0-71.0)	66 (62.3-70.8)	0.603
Median BMI, kg/m² (IQR)	22.9 (21.4-24.2)	23.6 (21.8-25.7)	< 0.001
NADT no	175	93	0.020
yes	71	61	0.029
PV, cm3 (IQR)	31.0 (24.0-40.8)	32.3 (24.5-44.8)	0.469
MUL, mm (IQR)	13 (12-15)	12 (11-14)	0.001
Incontinent before RARP no	240	149	0.756
yes	6	5	0.750
PSA, ng/ml (IQR)	7.6 (5.5-11.0)	8.14 (6.0-11.9)	0.213
GS sum	7 (7-8)	7 (7-7)	0.008
T stage ≦2b	197	112	0.111
≧2c	49	42	0.111
Risk criteria low	34	16	
intermediate	134	69	0.032
high	78	69	
Operated by expert surgeons	165	105	0.827
by non-expert surgeons	81	49	0.027
Operation time	165 (143-208)	165 (144-197)	0.902
Console time	120 (100-149)	119 (99-150)	0.570
Bleeding volume	200 (100-300)	200 (101.5-300)	0.217
Nerve sparing not done	72	46	
unilateral	146	98	0.268
bilateral	28	10	

Table 2. Logistic regression analyses of predictive factors including intraoperative factors on UI 3 months after RARP.

	Odds ratio	95% CI	<i>p</i> -value
Age	0.995	0.959-1.030	0.807
BMI	1.150	1.060-1.250	<0.001
NADT	1.220	0.666-2.220	0.533
PV	1.010	0.997-1.020	0.127
MUL	0.850	0.762-0.947	0.003
Continence status before RARP	1.570	0.450-5.500	0.478
PSA	0.992	0.970-1.010	0.439
GS sum	1.310	0.918-1.860	0.137
T stage ≧2c (vs ≦2b)	1.090	0.616-1.920	0.771
Risk criteria high (vs low or intermediate)	1.230	0.616-2.440	0.562
Non-expert surgeon	1.300	0.753-2.240	0.347
Operation time	1.010	0.990-1.020	0.485
Console time	0.991	0.974-1.010	0.272
Bleeding volume	1.000	0.999-1.000	0.699
Nerve sparing	0.997	0.664-1.500	0.987

Table 3. Preliminary results of AUC and accuracies on continence prediction by DL algorithms according to three MRI planes in 30 patients.

Model	AUC	Precision	Naive E	sayes			
AdaBoost	0.683 ± 0.000	0.687 ± 0.000			Predic	cted	
Naive Bayes	0.750 ± 0.000	0.680 ± 0.000			Good	Bad	
Neural Network	0.596 ± 0.000	0.605 ± 0.000		Good	9	3	
Random Forest	0.531 ± 0.073	0.543 ± 0.049	Actual	Bad	5	8	
SVM	0.352 ± 0.115	0.520 ± 0.000				CO 70/	
Coronal pla	ane				curacy =	00.7%	
Model	AUC	Precision	Naive E	Bayes			
AdaBoost	0.420 ± 0.000	0.518 ± 0.000			Predicted		
Naive Bayes	0.545 ± 0.000	0.553 ± 0.000			Good	Bad	
Neural Network	0.375 ± 0.000	0.410 ± 0.000		Good	5	3	
Random Forest	0.489 ± 0.151	0.464 ± 0.075	Actual	Bad	6	5	
SVM	0.316 ± 0.046	0.322 ± 0.000		\		. E.E. 20	
Sagittal pla	ane				ccuracy =	55.37	
Model	AUC	Precision	Neura	Neural Network			
AdaBoost	0.071 ± 0.000	0.062 ± 0.000			Pred	dicted	
Naive Bayes	0.449 ± 0.000	0.500 ± 0.000			Good	Bad	
Neural Network	0.510 ± 0.000	0.578 ± 0.000		Good	3	4	
Random Forest	0.274 ± 0.083	0.265 ± 0.061	Actual	Bad	2	5	
SVM	0.200 ± 0.059	0.000 ± 0.000					

Table 4. Results of AUC and accuracies on continence prediction by DL algorithms using the axial MRI plane information and preoperative clinicopathological parameters in 400 patients.

Model	Overall accuracy	Sensitivity	Specificity	AUC	Naive Ba	ayes			,	
Naive Bayes	68.5	71.1	64.3	0.758			Predict	ed class	Overall accuracy	6
Random Forest	67.8	82.1	44.8	0.689			Good	Bad	Sensitivity	7
SVM	65.8	87.0	31.8	0.653	Actual class	Good	175	71	,	
ANN	59.3	66.7	47.4	0.605	Actual class	Bad	55	99	Specificity	6
AdaBoost	58.5	67.5	44.2	0.558]					
	<u> </u>	opatin	ologice	ii para	meters on	ıy				
Model	Overall accuracy	Sensitivity	Specificity	AUC	Naive Ba	•				
•	Overall	·		•	-	•	Predicto	ed class	Overall accuracy	Γ,
Model	Overall accuracy	Sensitivity	Specificity	AUC	-	•	Predicto Good	ed class Bad	Overall accuracy	6
Model Naive Bayes	Overall accuracy 60.8	Sensitivity 71.1	Specificity 44.2	AUC 0.622	Naive Ba	•	_	I	Overall accuracy Sensitivity	6
Model Naive Bayes Random Forest	Overall accuracy 60.8 58.5	Sensitivity 71.1 74.1	Specificity 44.2 33.1	AUC 0.622 0.606	-	ayes	Good	Bad	<u> </u>	╁
Model Naive Bayes Random Forest SVM	Overall accuracy 60.8 58.5 61.0	71.1 74.1 87.0	Specificity 44.2 33.1 19.5	AUC 0.622 0.606 0.594	Naive Ba	Good	Good 175	Bad 71	Sensitivity	7
Model Naive Bayes Random Forest SVM ANN AdaBoost	Overall accuracy 60.8 58.5 61.0 58.5 53.0	71.1 74.1 87.0 67.9 63.0	Specificity 44.2 33.1 19.5 43.5 37.0	AUC 0.622 0.606 0.594 0.580 0.500	Naive Ba	Good Bad	Good 175 86	Bad 71 68	Sensitivity	7

55.3 61.8 44.8 0.533

Sensitivity 72.0

Grad CAM (Gradient-weighted Class Activation Mapping) [arXiv, 2017]

- A robust and parsimonious approach for indoor navigation using DCNN
- A potential capability in space feature learning and recognition
- · DCNN based approach to look into the visual similarity and visual distinctiveness of

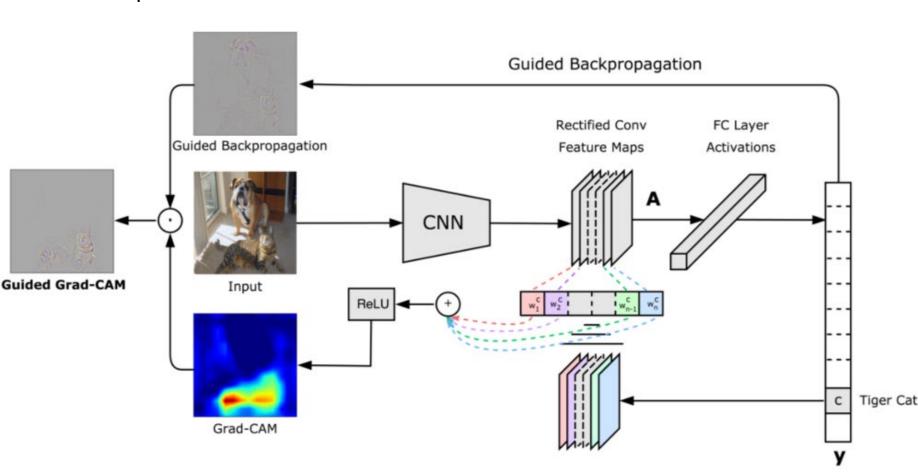
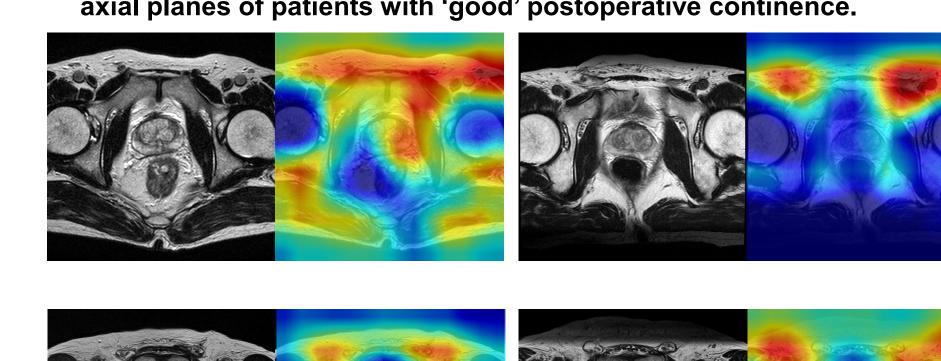


Figure 3a. Visualizing of activation maps by DL algorithms in MRI axial planes of patients with 'good' postoperative continence.



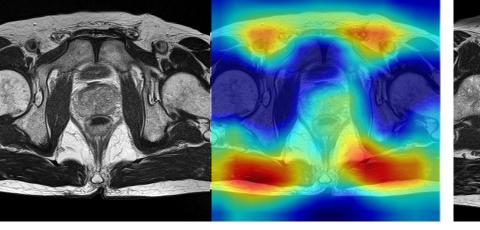


Figure 3b. Visualizing of activation maps by DL algorithms in MRI axial planes of patients with 'bad' postoperative continence.

