Impact of Metabolic Diseases and Drugs on Prostate Cancer Patients **Receiving Androgen Deprivation Therapy**

Jiun-Hung Geng^{1,2}, Anna Plym¹, Mark Pomerantz³, Kathryn L Penney^{4,5}, Junaid Nabi¹, Christopher Sweeney³, Lorelei Mucci^{4,5}, Adam Stuart Kibel¹

¹ Division of Urological Surgery, Brigham and Women's Hospital, Kaohsiung, Taiwan ³ Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts ⁴ Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 5 Channing Division of Network Medicine, Harvard Medical School and Brigham & Women's Harvard Medical School and Brigham & Women's

Introduction

- Metabolic diseases and drugs are among the variables influencing We retrospectively enrolled prostate cancer patients seen from 1997 on the outcome of prostate cancer (PCa) patients receiving to 2005 in the clinics of Brigham and Women's Hospital and Danaandrogen deprivation therapy (ADT). Farber Cancer Institute.
- We reviewed articles related to metabolic diseases and drugs and listed them as Table 1.
- Established risk factors for them are still limited and not conclusive.
- The aim of our study was to evaluated the effect of metabolic diseases and drugs on the time to development of PSA progression (castration-resistant disease) in patients receiving ADT.
- Table 1. Metabolic diseases and drugs on the prognosis of PCa patients with ADT

Environmental	Authors	Number of cases	Treatment	Primary	Outcome
factor			modality	endpoint	
Smoking	Oefelein MG	222 advanced PCa	ADT	Time to CRPC,	Worse outcome in
	et al., J Urol.			OS	time to CRPC and
	(2004)				OS.
Diabetes mellitus	Hu MB et al.	435 PCa (72 with	Bilateral	OS	No significant
	Int J Clin	concurrent diabetes)	orchiectomy		difference in OS.
	Oncol. (2018)				
	Shevach J et	148 advanced PCa (35 with	ADT	Time to CRPC,	No difference in
	al. Front	concurrent diabetes)		OS	time to CRPC;
	Oncol. (2015)				Worse OS in older
					patients (> 75 years
					old).
	Smith MR et	1554 all stage PCa	Radiotherapy	OS, prostate	Worse outcome in
	al. J Clin		with ADT	cancer specific	OS, but not
	Oncol. (2008)			mortality	prostate cancer
					mortality.
Hypertension	Shiota M et	182 PCa (with 89	ADT	Time to CRPC,	Better outcome in
	al. Front	concurrent hypertension)		OS	time to CRPC and
	Oncol. (2018)				OS.
Obesity	Hu MB et al.	435 PCa (126 with	Bilateral	OS	Better OS in
	Int J Clin	concurrent obesity)	orchiectomy		younger patients
	Oncol. (2018)				(age ≤ 65)
	Christopher J	287 PCa	RP + continuous	Time to CRPC,	A trend of worse
	et al. BJU Int.		ADT	prostate cancer	outcome in time to
	(2012)			specific	CRPC and prostate
				mortality	cancer specific
					mortality
Hyperlipidemia	Jong Chul	154 PCa	ADT	Time to CRPC	Worse outcome in
	Jeon et al.				time to CRPC in
	World J Mens				patients with bone
	Health. (2016)				metastasis
Statin use	Harshman LC	926 (283 with statin use)	ADT	Time to	Better outcome in
	et al. JAMA			progression	time to progression
	Oncol. (2015)				
Aspirin use	L Yang et al.	80 (22 with aspirin use)	ADT	CRPC	No significantly
	Lancet. (2016)				difference.
Metabolic	J. Flanagan et	82 (40 wit metabolic	ADT	Time to CRPC,	Worse outcome in
syndrome	al. Ann Oncol.	syndrome)		OS	time to CRPC.
	(2011)				

HARVARD

T.H. CHAN

CHOOL OF PUBLIC HEALTH

Cancer Institute

HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL**

Materials and Methods

- The inclusion criteria was PCa patients receiving long term ADT (at least 12 months), either due to biochemical relapse after local therapy or metastasis.
- We collected adequate information to evaluate for the presence of diabetes, hypertension, obesity, statin use, aspirin use, metformin use, hyperlipidemia, and metabolic syndrome at the initiation of ADT.
- Time to castration-resistant prostate cancer (CRPC) was defined as duration between ADT start and sequence of rising prostate specific antigen (PSA) values at a minimum of 1-week intervals, and 1.0 ng/ml is the minimal starting PSA level.
- Time to CRPC was treated as time-to-event data in the analysis.

Results

- Four hundred and twenty-two patients treated with ADT were identified and the median age was 62 years old. (Table 2)
- 365 (86.5%) prostate cancer patients experienced CRPC after ADT and the median time from ADT initiation to CRPC was 19.6 months. (Table 2)
- 304 (72%) patients died and the median time from ADT initiation to CRPC was 68.6 months. (Table 2)

Characteristic	
Number of Patients	422
Age at diagnosis	
Median, years (IQR)	62 (56-67)
Race, n (%)	
White	358 (84.8)
Black	16 (3.8)
Unknown	48 (11.4)
Biopsy Gleason score at diagnosis, n (%)	
≤7	173 (41.0)
>7	210 (49.8)
Unknown	39 (9.2)
Clinical M stage at diagnosis, n (%)	
M0	238 (56.4)
M1	166 (39.3)
Unknown	18 (3.7)
PSA at ADT initiation, ng/mL	
Median (IQR)	26.4 (9.0-104.7)
PSA nadir, ng/mL	
Median (IQR)	0.16 (0.01-1.20)
Time to PSA nadir, mo	
Median (IQR)	7.8 (4.0-12.8)
Median time from ADT initiation to CRPC, mo (95% CI)	19.6 (17.7-22.5)
Median time from ADT initiation to all cause mortality, mo	68.6 (60.2-76.9)
(95% CI)	
Treatment modality, n (%)	
ADT as primary treatment	199 (47.2)
ADT for post RP PSA failure	135 (32.0)
ADT for post RT PSA failure	83 (19.7)
Others	5 (1.1)
Environmental factors, n (%)	
Smoking (Active)	69 (16.4)
Diabetes Mellitus	48 (11.4)
Hypertension	220 (52.1)
Obesity (BMI>30)	144 (34.1)
Hyperlipidemia	223 (52.8)
Statin user	141 (33.4)
Aspirin user	125 (29.6)
Metformin user	42 (10.0)
Metabolic syndrome	179 (42.4)

range; PSA, prostate-specific antigen; RP, radical prostatectomy; RT: radiotherapy.

• Metabolic syndrome was most associated with time to CRPC (hazard ratio: 1.36, confidence interval: 1.04-1.77) after controlling for confounders. (Table 3, Figure 1)

• Table 3. Hazard ratio for CRPC by metabolic disease or medication

Variable	Label	HR _unadj	HR_adj1	HR_adj2
Smoking (ever)	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
_ 、 ,	Yes	$1.02 \ (0.82 - 1.26)$	0.99(0.79-1.24)	1.05(0.82 - 1.33)
Diabetes mellitus	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	$1.24 \ (0.90-1.71)$	$1.27 \ (0.89-1.82)$	1.22(0.83-1.79)
Hypertension	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	1.16(0.94 - 1.42)	$1.27 \ (1.01 \text{-} 1.59)$	1.27 (1.00-1.61)
Obesity	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	1.09(0.88-1.36)	$1.05\ (0.83 \text{-} 1.33)$	$1.04 \ (0.80-1.34)$
Hyperlipidemia	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	$0.85 \ (0.69-1.04)$	$0.85 \ (0.68-1.06)$	0.89(0.70-1.12)
Metabolic syndrome	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	$1.44 \ (1.13 - 1.83)$	1.38(1.07-1.78)	1.36(1.04-1.77)
Statins	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	$0.74 \ (0.59 - 0.93)$	$0.75\ (0.58-0.95)$	$0.79 \ (0.61 - 1.02)$
Aspirin	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	$0.79\ (0.63-0.99)$	$0.78 \ (0.61 - 1.00)$	$0.80 \ (0.61 \text{-} 1.05)$
Metformin	No	1 (Ref.)	1 (Ref.)	1 (Ref.)
	Yes	$1.05 \ (0.69-1.60)$	1.10(0.69-1.76)	1.08(0.66-1.75)

Adjustment 1: age at ADT initiation, year of ADT initiation, and race Adjustment 2: age at ADT initiation, year of ADT initiation, race, M1, Gleason 7+, PSA at ADT initiation, primary treatment

• No individual components of metabolic syndrome was independently associated with time to CRPC. (Table 4)

• Table 4: Hazard ratio for CRPC by individual components of metabolic disease.

Variable	Label	HR_adj1	HR_adj2
BP135_80	No	1 (Ref.)	1 (Ref.)
	Yes	1.08(0.84-1.40)	0.99(0.70-1.40)
BMI30	No	1 (Ref.)	1 (Ref.)
	Yes	1.02(0.80-1.32)	1.08(0.77-1.49)
HDL40	No	1 (Ref.)	1 (Ref.)
	Yes	1.10(0.82 - 1.47)	0.75(0.44-1.27)
TG150	No	1 (Ref.)	1 (Ref.)
	Yes	$1.22 \ (0.91 - 1.63)$	1.33(0.78-2.27)
Glucose110	No	1 (Ref.)	1 (Ref.)
	Yes	1.35(0.99-1.83)	1.55(1.07-2.25)

Adjustment 1: age at ADT initiation, year of ADT initiation, race, M1, Gleason 7+, PSA at ADT initiation, primary treatment

Adjustment 2: all of above + the other components

• Interestingly, comparing the metabolic syndrome patients with statin use and without statin use, the cumulative incidence of CRPC was higher in the group of patients without statin use. (Table 5, Figure 2)

• Table 5. Hazard ratio for CRPC by combinations of metabolic disease and statins/aspirin/metformin.

Adjustment: age at ADT initiation, year of ADT initiation, race, M1, Gleason 7+, PSA at ADT initiation, primary treatment Ref1: "No" is the reference group Ref2: "Yes, without" is the reference group

Conclusion • Our data suggest that metabolic syndrome is a risk factor for earlier development of CRPC. • Patients with metabolic syndrome and statin use had longer time to progression to CRPC than patients without statin use.

• This study highlights the need as well as provides the support for future prospective investigation to better characterize the association of metabolic syndrome and statin user with clinical outcomes in prostate cancer.

• Special thanks to Anna Plym, John A Steinharter, Grace K Shaw, and Victoria Wang.

Variable	Label	HR ref1	HR_ref2
Metabolic syndrome	No	1 (Ref.)	0.60(0.41-0.87)
	Yes, without statins	1.67(1.14-2.43)	1 (Ref.)
	Yes, with statins	1.09(0.81-1.47)	0.66(0.45 - 0.96)
	Only statins	$0.44 \ (0.22 - 0.88)$	$0.27 \ (0.13 - 0.56)$
Metabolic syndrome	No	1 (Ref.)	$0.77 \ (0.55 - 1.07)$
	Yes, without aspirin	1.30(0.94-1.80)	1 (Ref.)
	Yes, with aspirin	1.19(0.84-1.70)	0.92(0.64-1.32)
	Only aspirin	$0.61 \ (0.35 - 1.07)$	0.47 (0.26 - 0.83)
Metabolic syndrome	No	1 (Ref.)	$0.73 \ (0.55 - 0.96)$
	Yes, without metformin	1.37(1.04-1.81)	1 (Ref.)
	Yes, with metformin	1.28(0.76 - 2.15)	$0.93 \ (0.55 \text{-} 1.57)$
	Only metformin	0.99(0.98-1.01)	0.99(0.98-1.01)
Metabolic syndrome	No	1 (Ref.)	0.66(0.42 - 1.04)
	Yes, without medication	$1.51 \ (0.97 - 2.38)$	1 (Ref.)
	Yes, with medication	$1.14 \ (0.84 - 1.55)$	0.75(0.48 - 1.17)
	Only medication	$0.62 \ (0.38-1.02)$	$0.41 \ (0.23 \text{-} 0.75)$

• Figure 2. Standardized cumulative incidence of CRPC (controlling for confounding)

Acknowledgements

• The data of this project was provided from the Gelb Center Committee.