Sulfasalazine could modulate the CD44v9-xCT system and enhance CDDP-induced cytotoxic effects in metastatic bladder cancer; A novel therapeutic strategy for metastatic bladder cancer

Koichiro Ogihara1, Eiji Kikuchi2, Toshikazu Takeda1, Kazuhiro Matsumoto1, Hideyuki Saya3, and Mototsugu Oya1
1: Dept. of Urology, Keio University School of Medicine, Tokyo, Japan 2: Dept. of Urology, St. Marianna University School of Medicine, Kanagawa, Japan 3: Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan

Introduction and Aim

- The development of a new therapeutic strategy against cisplatin (CDDP) resistant metastatic bladder cancer is strongly warranted.
- Cancer stem cells (CSCs) are known to be key cells involved in the tumor growth, recurrence, metastasis and treatment resistance. CD44v9, a variant isoform of CD44 which is thought to be a CSC modulator, interacted with and stabilized xCT, a subunit of the cystine transporter, thereby promoting intracellular glutathione synthesis (GSH), which contributes to the protection against reactive oxygen species (ROS) generated by various cellular environmental stresses (Figure 1A).

Recently, sulfasalazine (SSZ), widely used for the treatment of ulcerative colitis, has been reported to regulate CD44v9 and thereby to induce intracellular ROS production (Figure 1B).

- The aim of our study was to investigate 1) the functional role of SSZ in ROS production and its cytotoxic effects on MBT-2V cells, which were established from a parent MBT-2 tumor with multiple lung metastases and 2) the therapeutic effects of SSZ with or without cisplatin (CDDP) using a MBT-2V lung metastatic bladder cancer model.

Summary of Findings

Figure 2: Sulfasalazine selectively inhibits cell proliferation, decreases GSH synthesis, increases ROS levels, and enhances cisplatin-induced cytotoxic effects in MBT-2V cells. (A) Cytotoxic effects of sulfasalazine (SSZ) in MBT-2V cells. Cells were exposed to various concentrations of SSZ for 48 hours. (B) Cytotoxic effects of SSZ in the presence or absence of N-acetylcysteine (NAC, an antioxidant). Cells were exposed to various concentrations of SSZ with or without NAC (3 µM) for 48 hours. (C) Intracellular GSH levels of MBT-2V cells treated with the vehicle control, 300 and 400 µM of SSZ, and 100 µM of BSO for 24 hours. (D) Quantitative analysis of ROS production by MBT-2V cells treated with vehicle control, 300 µM of SSZ, and 100 µM of BSO for 24 hours. (E) Cytotoxic effects of SSZ (300 µM), cisplatin (CDDP) (10 µM), and their combinations in MBT-2V cells for 48 hours. (F) The expression of CD44v9, phospho-p38 and total p38 protein in MBT-2V cells treated with the vehicle control, SSZ alone (300 µM), CDDP alone (10 µM), and their combinations detected by Western blotting. (G and H) Signal intensities of CD44v9 and phospho-p38 protein expression in each group was quantitated. All data are shown as means ± SE, * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001.

Figure 3: The effect of SSZ and CDDP for murine lung metastasis model

Figure 4: Representative microscopic findings of lungs extracted from mice treated with the vehicle control, sulfasalazine alone, cisplatin alone, and their combinations in the murine lung metastasis model. (A) H&E staining and immunostaining for CD44v9. The bar indicates 100 µm.

Conclusion

Sulfasalazine could induce ROS production and enhance CDDP-induced cytotoxic effects. The combination of Sulfasalazine with CDDP might be a novel therapeutic modality against metastatic bladder cancer.

Figure 1: The role of CD44v9 in CSCs

Figure 2: The effect of SSZ on mouse bladder cancer CD44v9 positive cell lines MBT-2V cells, which have highly lung metastasis potential

Figure 3: The survival analysis of sulfasalazine treatment and anti-tumor effects for lung tumor nodules of MBT-2V cells into the tail veins of female C3H/HeJ mice on day 0. (A) The survival rate of animal implanted with MBT-2V cells. (B) The survival rate of animal implanted with MBT-2V cells and treated with vehicle control, SSZ alone, CDDP alone, and their combinations.

Figure 4: Representative microscopic findings of lungs extracted from mice treated with the vehicle control, sulfasalazine alone, cisplatin alone, and their combinations in the murine lung metastasis model. (A) H&E staining and (B) immunostaining for CD44v9 in the lung tissue of mice treated with the vehicle control, sulfasalazine (SSZ) alone, cisplatin (CDDP) alone, and their combinations. The bar indicates 100 µm.

The authors have no financial conflicts of interest to disclose concerning the presentation.