PD23-07 A MULTI-CENTER, PROSPECTIVE, RANDOMIZED, CONTROLLED STUDY TO EVALUATE THE SAFETY OF A VALVE-LESS TROCAR INSUFFLATION SYSTEM (AIRSEAL) VS. CONVENTIONAL INSUFFLATION FOR THE MANAGEMENT OF PNEUMOPERITONEUM DURING ROBOTIC PARTIAL NEPHRECTOMY

Michael Stifelman*, Sam Bhayani, Robert Figenshau, Bethany Desroches and James Porter

Department of Urology, Hackensack University Medical Center, Hackensack, NJ
Department Surgery, Division of Urology, Washington University School of Medicine, St. Louis, MO
Swedish Urology Group, Swedish Hospital Medical Center, Seattle, WA
Disclosures

• Intuitive Surgical
• C-SATS
• Ethicon
• VTI
• ConMed
Introduction

- Airseal (Valveless Trocar Insufflation) introduced in 2007
- Air barrier, no duckbill
- .01 micron filter
• Advantages
 – Stable pneumoperitoneum
 – Decrease in CO2 absorption
 – Able to suction without loss of pneumoperitoneum
 – Decrease in IAP -> decrease in pain

• Disadvantages
 – Masked Pneumothorax
 – Increase risk of SQE
 – Increase risk air embolism
Material Methods

Inclusion Criteria:
1. 18 to 80 years of age
2. Capable and willing to give informed consent
3. Acceptable candidate for an elective, non-emergent robotic partial nephrectomy

Exclusion Criteria:
1. Advanced renal or blood transfusion, if necessary
2. Active systemic or cutaneous infection or inflammation
3. Pre-existing immunodeficiency disorder and/or chronic use of systemic steroids
4. Uncontrolled diabetes mellitus
5. Known significant history of bleeding diathesis or coagulopathy, or Von Willebrand’s disease or current platelet count < 100,000 cells/mm³, baseline INR > 1.8, or fibrinogen level less than 140 mg/dL if received a fibrinolytic agent within prior 24 hours
6. Severe co-existing illnesses, any life expectancy of less than 30 days
7. Currently involved in any other investigational clinical studies
8. Significant anemia with a hemoglobin level less than 10 g/dL or a hematocrit less than 30%
9. Renal insufficiency (serum creatinine > 2.5 mg/dL)
10. Female who are pregnant, planning to become pregnant within 3 months of the procedure, or lactating
11. Extremes morbid obesity (BMI greater than 45 kg/m²) or undertweight (BMI less than 20 kg/m²)
12. Patients presenting with Anuria
Outcome Data

• Effectiveness endpoints:
 – maintenance of stable pneumoperitoneum as measured by fluctuations in intraabdominal pressure
 – insufflation time,
 – ease of anesthesia management,
 – recovery room time,
 – hospital discharge time

• Safety endpoint:
 – Insufflation device-related subcutaneous emphysema
 – Rate of pneumothorax, pneumomediastinum
 – Post-operative pain (general/shoulder) measured with Visual Analogue Scale
 – Complications.
Demographics

- 202 patients randomized 1:1:1
- No difference
 - Gender
 - Age
 - BMI

<table>
<thead>
<tr>
<th>Variable</th>
<th>AIS 12 mmHg</th>
<th>AIS 15 mmHg</th>
<th>C15 15 mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment</td>
<td>67</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>24 (34%)</td>
<td>25 (37%)</td>
<td>24 (35%)</td>
</tr>
<tr>
<td>Male</td>
<td>43 (66%)</td>
<td>42 (63%)</td>
<td>44 (65%)</td>
</tr>
<tr>
<td>Mean age, y (± SD) [range]</td>
<td>60 (13.2)</td>
<td>60 (11.9)</td>
<td>60.1 (12.4)</td>
</tr>
<tr>
<td>Mean BMI (± SD) [range]</td>
<td>29.1 (6.0)</td>
<td>31.3 (5.6)</td>
<td>28.8 (5.6)</td>
</tr>
</tbody>
</table>
Effectiveness AIS vs. CIS

- Decrease Airway pressure
- Decrease end tidal CO2
- Maintain DBP
Safety AIS vs CIS

- AIS 12 – Shorter RRT
- AIS 12 – Decease SQE
- No difference in PTX
- No difference in PMS
- 2 Retro RPN need to convert CIS -> AIS
Effect of Retro vs Trans Approach

- Higher rate of SQE
- No difference in PTX
- No difference in PMS

<table>
<thead>
<tr>
<th>Approach</th>
<th>N</th>
<th>SCE</th>
<th>Rate</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS 12 mmHg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans</td>
<td>35</td>
<td>1</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Retro</td>
<td>28</td>
<td>8</td>
<td>29%</td>
<td>0.01</td>
</tr>
<tr>
<td>AIS 15 mmHg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans</td>
<td>38</td>
<td>6</td>
<td>16%</td>
<td>0.01</td>
</tr>
<tr>
<td>Retro</td>
<td>30</td>
<td>15</td>
<td>50%</td>
<td>0.004</td>
</tr>
<tr>
<td>CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans</td>
<td>44</td>
<td>12</td>
<td>27%</td>
<td>0.004</td>
</tr>
<tr>
<td>Retro</td>
<td>19</td>
<td>13</td>
<td>68%</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Post-op Pain

• Using MMRM Analysis
 – Less shoulder pain with AIS
 – No difference in AIS 12 vs AIS 15

Combining over all time points by Mixed Model Repeated Measures (MMRM) Analysis

<table>
<thead>
<tr>
<th>Original Data</th>
<th>Using Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect Estimate*</td>
<td>p-value**</td>
</tr>
<tr>
<td>AIS 12 mmHg vs CIS</td>
<td>-0.28</td>
</tr>
<tr>
<td>AIS 15 mmHg vs CIS</td>
<td>-0.40</td>
</tr>
</tbody>
</table>
Summary

• Largest RCT comparing AIS vs CIS for RPN
• Airseal distinct efficacy advantages
 – Stable pneumoperitoneum
 – Decrease Airway pressure
 – Decrease end tidal CO2
 – Maintain DBP
Summary

• Distinct Safety Advantages
 – Shorter RRT
 – Decrease SQE
 – No difference in PTX or PSM
• Retro Approach higher rate SQE only
• Decrease in shoulder pain based on VAS
• No air embolism symptoms noted in any group