PD42-09

Urine cell image analysis using a deep learning model

Masatomo Kaneko ^{1, 2}, Keisuke Tsuji¹, Keiichi Masuda ³, Kengo Ueno ³, Kohei Henmi ³, Shota Nakagawa ⁴, Ryo Fujita ⁵, Kensho Suzuki ⁵, Yuichi Inoue ⁵, Hikaru Shindo ⁵, Eiichi Konishi ⁶, Tetsuo Takamatsu⁷, Osamu Ukimura ¹

1 Kyoto Prefectural University of Medicine, Dept. of Urology, Kyoto, Japan, 2 USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA, 3 KYOCERA Communication Systems Co., Ltd., Corporate R&D Department, Kyoto, Japan, 4 KYOCERA Communication Systems Co., Ltd., AI Research Center, Kyoto, Japan, 5 Rist Inc., AI Research Center, Kyoto, Japan, 6 Kyoto Prefectural University of Medicine, Dept. of Surgical Pathology, Kyoto, Japan, 7 Kyoto Prefectural University of Medicine, Dept. of Medical Photonics, Kyoto, Japan

Conflict of Interest Disclosure

I have no potential of interest to report.

This is collaborative research with Kyocera Communication System Co., Ltd. and Rist Co., Ltd.

Urine cytology

- Used to search and follow-up UC.
- Noninvasive and inexpensive screening test.
- Can be performed **repeatedly**.
- Low sensitivity for low-grade UC.
 Poor inter-observer reproducibility.

Clinical issues

There is a great need for tools for urine cytology to reduce the workload of pathologists and cytotechnologists and to improve the reproducibility and accuracy.

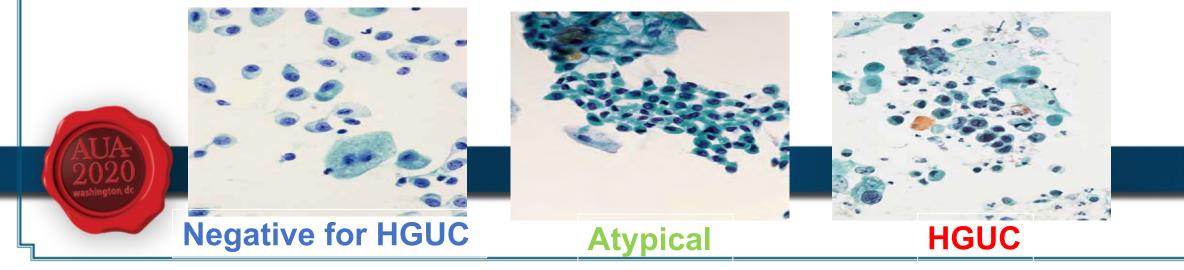
Recently, with **the advance of artificial intelligence (AI) technology** using a convolutional neural network (CNN) algorithm for image analysis, some studies reported promising results.

In urine cytology, image analysis using AI is expected to be a method that not only **improve the reproducibility** but also contributes to **reduction in the burden** on cytotechnologists and pathologists.

Objectives

To develop **AI for automated urine cell image analysis** using **deep learning model**

Materials

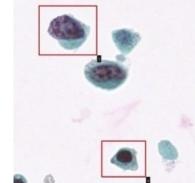

A total of 194 consecutive urine samples obtained from patients eventually histologically diagnosed with urothelial cancer in our hospital (University Hospital, Kyoto Prefectural University of Medicine) from January 2016 to December 2017.

Negative for high grade urothelial carcinoma (HGUC): 78 samples (40.2%)

Atypical urothelial cells: 33 samples (17.0%)

Suspicious for HGUC: 20 samples (10.3%)

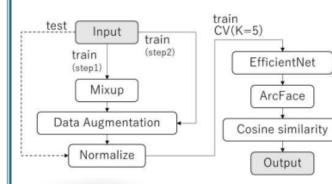
HGUC, low-grade urothelial neoplasm (LGUN), and other malignancies: 63 cases (32.5%)



Characteristics

	Median (Interquartile range)
Age (year)	75 (69 - 80)
	Number (%)
pTstage	
а	125 (64.4)
1	36 (18.6)
2	12 (6.2)
cis	21 (10.8)
grade (low/high)	
low	89 (45.9)
high	105 (54.1)

Methods Step 1. Whole slide imaging (WSI) Step 2. Labeling



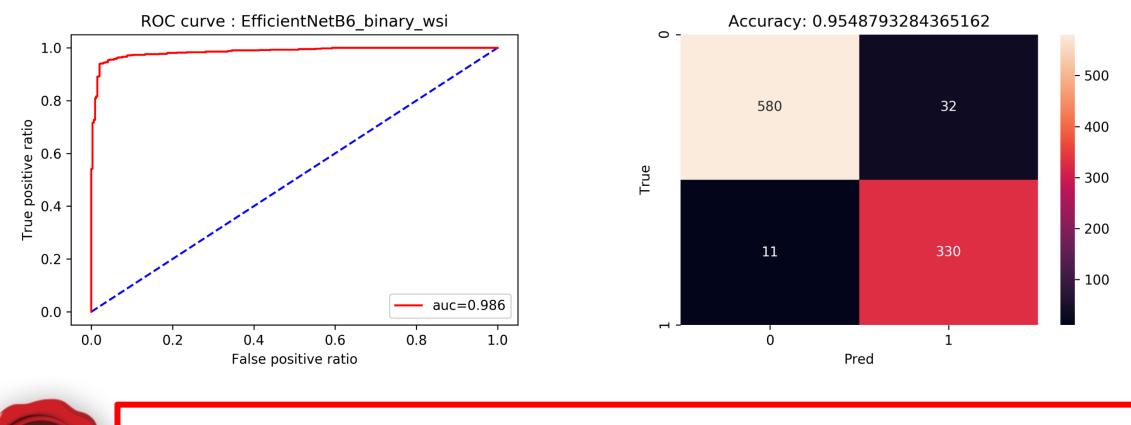
4637 cell images

- 3128 benign cells
- 398 atypical cells
- 1111 malignant cells

Step 3. Machine learning

80% for training and validation (4:1) 20% for test data 5-Fold cross validation Binary classification model

Step 4. Evaluation


VS

R

ROC analysis

3 Experienced Cytotechnologists (2, 28, and 25 years' experience)

Result Average model Al

Average AUC 0.986, Highest Accuracy 0.955, the sensitivity 97.1%, and the specificity 94.4%.

Comparison between AI and cytotechnologists

	Accuracy	Sensitivity	Specificity
Cytotechnologist A	0.846	0.941	0.793
Cytotechnologist B	0.824	0.522	0.992
Cytotechnologist C	0.938	0.971	0.92
AI (Highest accuracy model)	0.955	0.948	0.968
AI (Matched with C's sensitivity model)	0.954	0.971	0.944

AI achieved excellent accuracy which was comparable with expert cytotechnologists.

Conclusions

Urine cell image analysis using deep learning model achieved highly accurate automatic diagnosis.

This **AI** can be a **useful and reproducible method** to assist cytotechnologists and pathologists.