A deep learning network along with PIRADS can distinguish clinically significant and insignificant prostate cancer on bi-parametric MRI:A multi-center study

<u>Amogh Hirematha</u>, Rakesh Shiradkara, Harri Merisaari^b, Prateek Prasannaa, Otto Ettala^b, Pekka Taimen^b, Hannu Aronen^c, Peter Boström^b, Jonathan Pierce^d, Sree Harsha Tirumani^d, Art Rastinehad^e, Ivan Jambor^b, Andrei Purysko^f, Anant Madabhushi^a

^aCase Western Reserve University, Cleveland, OH, ^bUniversity of Turku, Turku, Finland, ^cTurku University Hospital, Turku, Finland, ^dUniversity Hospitals, Cleveland, OH, ^eIcahn School of Medicine at Mount Sinai, New York, NY, ^fCleveland Clinic, Cleveland, OH

Identification of clinically significant prostate cancer

- Decide treatment strategies (Surgery, radiation therapy or active surveillance)
- Current standard of assessment: Invasive biopsies!

¹Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 40, 244–252 (2016).

The Center for

Computational Imaging & Personalized Diagnostics

MRI for identification of clinically significant prostate cancer

• Vulnerable to inter- and intra- reader variability

Source : https://www.ncbi.nlm.nih.gov/pubmed/29226826

Previous Work in Prostate Cancer CAD and AI

Prostate Cancer Detection ¹	Single Instance Learning: Noisy patch labels	
Clinically significant PCa detection: ResNet based transfer learning ²	Single site study	
Prostate Cancer Diagnosis using 3D multi-parametric MRI ³	Patch based: No contextual and spatial information	
Classification of clinically significant prostate cancer using UNet ⁴	Combination of deep learning predictions and Pl- RADS unexplored.	

1.Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 40, 244–252 (2016).

2. Zhong, X. et al. Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdom Radiol (NY) 44, 2030–2039 (2019).

3. Liu, S., Zheng, H., Feng, Y. & Li, W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. in (eds. Armato, S. G. & Petrick, N. A.) 1013428 (2017). doi:10.1117/12.2277121.

4. Schelb, P. et al. Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology 293, 607–617 (2019).

Objective

Distinguish <u>clinically significant</u> (csPCa) and <u>insignificant</u> <u>prostate cancer (ciPCa)</u> on bi-parametric MRI by combining deep learning predictions with PI-RADS score

The Center for Computational Imaging & Personalized Diagnostics

Dataset

- Three institutions (D₁, D₂, D₃)
 - N = 359 patients, N = 492 lesions
 - Training set : D₁ (N=155 lesions)
 - Testing set : D₂,D₃ (N=337 lesions)
- Bi-parametric 3T MRI
 - T2W MRI and ADC maps (b-values: 0-2000s/mm²)
- Endorectal / Surface coil
- Ground truth: radiologists > 9 years experience (whole mount prostatectomy sections or biopsies).

Experiment I: Distinguishing clinically significant, insignificant prostate cancer using attention based deep learning model

- Patches cropped around the prostate
- Attention based model : Binary segmentation as input channel.
- Parallel branches for T2W and ADC maps.
- Multiple instance learning : summarize decisions of multiple image slices.

The Center for Computational Imaging & Personalized Diagnostics

Experiment I: Distinguishing clinically significant, insignificant prostate cancer using attention based deep learning model

ciPCa Lesion

csPCa Lesion

- AUC : 0.76, Sensitivity : 85%, Specificity: 38% on the testing cohort.
- Activation maps : Networks focusing at cancerous regions to make decisions.

Experiment 2: Combining deep learning predictions with PI-RADS score to distinguish clinically significant and insignificant prostate cancer

- Combining deep learning predictions and PI-RADS score.
- Training logistic regression classifier on the combination.

Source : https://www.ncbi.nlm.nih.gov/pubmed/29226826

Experiment 2: Combining deep learning predictions with PI-RADS score to distinguish clinically significant and insignificant prostate cancer

	PI-RADS	De-MIL	De-MIL + PI-RADS
AUC	0.75	0.76	0.79
Sensitivity	85%	85%	85%
Specificity	40%	38%	43%
PPV	78%	78%	79%
NPV	52%	51%	55%

Conclusions

- An attention based multiple instance learning CNN (De-MIL) can distinguish clinically significant and insignificant prostate cancer.
- Performance similar to PI-RADS assessment
- Combination of deep learning predictions and PI-RADS can improve performance.
- Future work: Combine other clinical variables, predict upstaging in active surveillance patients.

Acknowledgements

Advisor: Dr. Anant Madabhushi Funding sources :

- National Cancer Institute of the National Institutes of Health under award numbers IU24CA199374-01, R01CA202752-01A1, R01CA208236-01A1, R01 CA216579-01A1, R01 CA220581-01A1, IU01 CA239055-01.
- the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558).
- the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.
- The DoD Prostate Cancer Research Program Idea Development Award W81XWH-18-1-0524

The Center for Computational Imaging & Personalized Diagnostics

