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Identification of clinically significant prostate cancer
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* Decide treatment strategies (Surgery, radiation therapy or active surveillance)

* Current standard of assessment: Invasive biopsies!

'Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J.
Surg. Pathol. 40, 244-252 (2016).
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MRI for identification of clinically significant prostate cancer

ADC / DWI

ADC — focal mild/moderate

hypointense
3 DW| — iso/mild hyper-
intense < [.5cm

ADC — focal markedly
4 __ hypointense

DWI — markedly hyper-
intense < 1.5cm

, , PI-RADS MODERATE inter- and intra- reader
Multi-parametric MRI (Prostate Imaging-Reporting Data System) variability

* Prostate Imaging-Reporting Data System (PI-RADS) scoring.

* Vulnerable to inter- and intra- reader variability

Source : https://www.ncbi.nlm.nih.gov/pubmed/29226826

CASE SCHOOL Ater :
T ]
CASE WESTERN RESERVE P ging ¢

3
7
E§

UNIVERSITY Personalized Diagnostics


https://www.ncbi.nlm.nih.gov/pubmed/29226826

Previous Work in Prostate Cancer CAD and Al

Prostate Cancer Detection' Single Instance Learning: Noisy patch labels

Clinically significant PCa detection: ResNet based

. Single site stud
transfer learning? 8 y

Prostate Cancer Diagnosis using 3D multi-parametric o ,
& & P Patch based: No contextual and spatial information

MRI3
Classification of clinically significant prostate cancer | Combination of deep learning predictions and PI-
using UNet* RADS unexplored.

|.Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J.
Surg. Pathol. 40, 244-252 (2016).

2. Zhong, X. et al. Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdom Radiol (NY) 44, 2030-2039 (2019).

3. Liu, S., Zheng, H., Feng, Y. & Li, W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. in (eds. Armato, S. G. & Petrick, N. A.) 1013428 (2017). doi:10.1117/12.2277121.

4. Schelb, P. et al. Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology 293, 607-617 (2019).
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Objective

Distinguish clinically significant (csPCa) and insignificant

prostate cancer (ciPCa) on bi-parametric MRl by combining

deep learning predictions with PI-RADS score
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Dataset

Three institutions (D,, D,, D;)
* N = 359 patients, N = 492 lesions

* Training set : D, (N=155 lesions)
* Testing set : D,,D; (N=337 lesions)

Bi-parametric 3T MRI

 T2W MRl and ADC maps (b-values: O-
2000s/mm?)

Endorectal / Surface coil

Ground truth: radiologists > 9 years experience
(whole mount prostatectomy sections or biopsies).
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Experiment |: Distinguishing clinically significant, insignificant prostate
cancer using attention based deep learning model
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Patches cropped around the prostate
Attention based model : Binary segmentation as input channel.
Parallel branches for T2W and ADC maps.

Multiple instance learning : summarize decisions of multiple image slices.
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Experiment |: Distinguishing clinically significant, insignificant prostate
cancer using attention based deep learning model
ciPCa Lesion csPCa Lesion

.. . ’
]

By iy \ % |
* AUC :0.76, Sensitivity : 85%, Specificity: 38% on the testing cohort.
* Activation maps : Networks focusing at cancerous regions to make decisions.
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Experiment 2: Combining deep learning predictions with PI-RADS score
to distinguish clinically significant and insignificant prostate cancer

ADC/DWI

ADC — focal mild/moderate

hypointense
3 DWI — iso/mild hyper-

intense <1.5¢cm

ADC - focal markedly
4 __ hypointense

Dwi - markedly hyper-
intense < 1.5cm

PI-RADS
(Prostate Imaging-Reporting Deep Learning Predictions
Data System)

* Combining deep learning predictions and PI-RADS score.
* Training logistic regression classifier on the combination.

Source : https://www.ncbi.nlm.nih.gov/pubmed/29226826
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Experiment 2: Combining deep learning predictions with PI-RADS score
to distinguish clinically significant and insignificant prostate cancer

1.0
0.8
5 AUC 0.75 0.76 0.79
v 0.6
= Sensitivity |  85% 85% 85%
< 0.4
2 Specificity 40% 38% 43%
0.2 —— PI-RADS AUC=0.75
—— De-MIL AUC=0.76 PPV 78% 78% 79%
0.0 —— De-MIL + PI-RADS AUC=0.79 . S .
0.0 0.2 0.4 0.6 0.8 1.0 NPV 22% 1% 357

False Positive Rate
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Conclusions

* An attention based multiple instance learning CNN (De-MIL) can
distinguish clinically significant and insignificant prostate cancer.

* Performance similar to PI-RADS assessment

* Combination of deep learning predictions and PI-RADS can improve
performance.

* Future work: Combine other clinical variables, predict upstaging in
active surveillance patients.
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