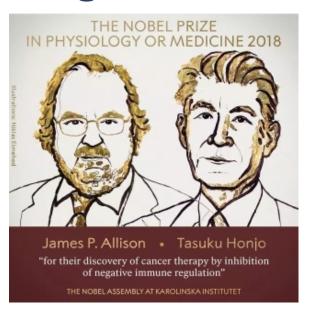
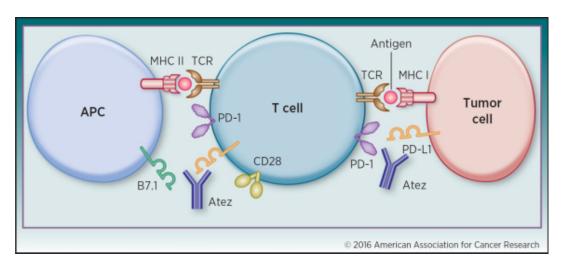


Education & Research, Inc.

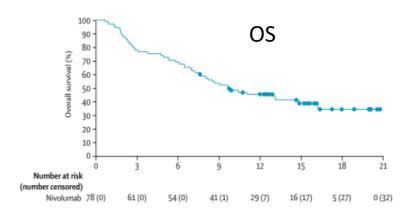
AUA VIRTUAL EXPERIENCE

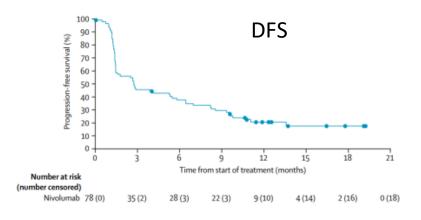
PD60-03


Mutation in TP53 as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade Immunotherapy in Advanced Urothelial Carcinoma


Siteng Chen, Xiang Wang, Junhua Zheng

Department of Urology, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai, China


Background:



Reference: Brant A Inman, et al. Atezolizumab: A PD-L1-Blocking Antibody for Bladder Cancer. Clin Cancer Res. 2017, 23(8):1886-1890.

Background:

Nivolumab (anti- PD-1) was associated with a substantial and durable clinical response in previously treated patients with locally advanced or metastatic urothelial carcinoma

Reference: Sharma P, et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 2016;17:1590-1598.

However:

- 1. Only 15% to 24% of treated patients with metastatic urothelial carcinoma could respond to immunotherapy
- 2. The understanding of predictive biomarkers to discern patients who could benefit from immunotherapy remains an ongoing challenge.
- 3. TP53 mutation status is associated with clinical response to immunotherapy in lung adenocarcinoma, but the association in metastatic urothelial carcinoma in still unknown.

Reference: ZY Dong, et al. Potential Predictive Value of TP53 and KRAS Mutation Status for Response to PD-1 Blockade Immunotherapy in Lung Adenocarcinoma. Clin Cancer Res. 2017: 23(12):3012-3024.

Methods:

- 1. We performed an integrated analysis based on multiple-dimensional types of data, including clinical trial follow-up data, genomic and transcriptomic data.
- 2. Cohorts of bladder cancer patients treated with immunotherapy were retrieved from cBioPortal for CANCER GENOMICS.
- 3. Gene set enrichment analysis was performed to associate the potential signature of genes with the TP53 mutation status.

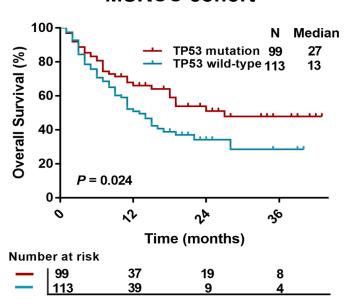
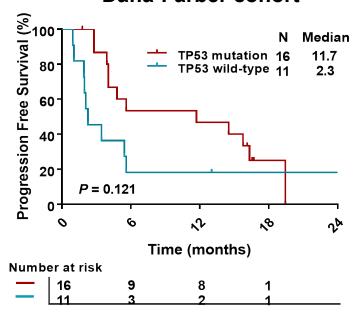

Reference: Samstein RM, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019: 51(2):202-206.

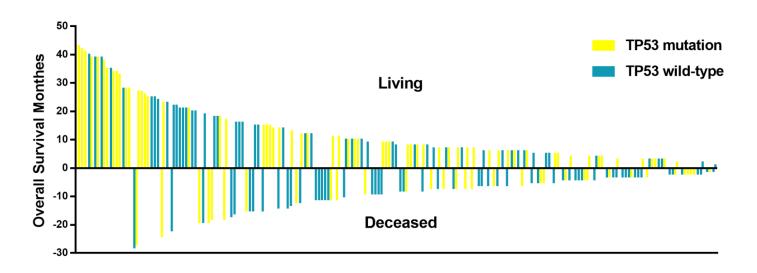
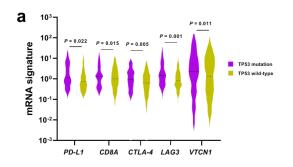
Table 1. Demographic, clinical and pathological information of the Immunotherapy cohorts.


	NACKCC ash and	Davis Faultau aaltaut
	MSKCC cohort	Dana-Farber cohort
No. of patients	212	27
Age(year)		
Mean	67.4	65.2
Gender		
Male	163(76.9%)	19(70.4%)
Female	49(23.1%)	8(29.6)
Drug type		
anti-PD-1/PD-L1	189(89.2%)	26(96.3%)
anti-PD-1/PD-L1+CTLA-4	23(10.8%)	1(3.7%)
Tumor type		
Primary	123(58.0%)	0
Metastasis	89(42.0%)	27(100%)
Liver	13(6.1%)	/
Lung	15(7.1%)	/
Lymph node	29(13.7%)	/
Pelvis	7(3.3%)	/
Others	25(11.8%)	/
Vital status		
Living	119(56.1%)	12(44.4%)
Deceased	93(43.9%)	15(55.6%)
TP53 status		
Mutation	99(46.7%)	16(59.3%)
Wild type	113(53.3%)	11(40.7%)

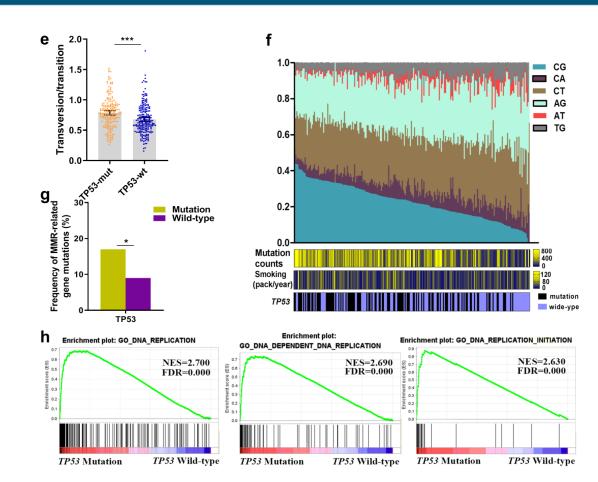
Results:

MSKCC cohort

Dana-Farber cohort




Table 2. Univariable and Multivariable Cox Analyses of Overall Survival

	Univariable Cox analysis			Multivariable Cox analysis			
Parameter	HR	95% CI	Р	HR	95% CI	Р	
Age	0.999	0.980 to 1.018	0.915				
Sex	1.146	0.666 to 1.971	0.623				
Tumor purity	1.006	0.996 to 1.016	0.226				
Drug type:	1.237	0.656 to 2.333	0.511				
anti-PD-1/PD-L1 vs							
anti-CTLA4+PD-1/PD-L1							
Primary site:	1.019	0.609 to 1.706	0.943				
bladder/urethra vs upper tract							
Metastasis:	1.527	1.015 to 2.296	0.042	1.492	0.992 to 2.245	0.055	
liver vs no	3.399	1.749 to 6.605	<0.001				
lung vs no	1.365	0.642 to 2.898	0.419				
lymph node vs no	0.946	0.476 to 1.879	0.873				
pelvis vs no	0.949	0.339 to 2.652	0.920				
others vs no	1.869	1.038 to 3.367	0.037				
TP53 mutation vs wide-type	0.625	0.410 to 0.952	0.029	0.638	0.418 to 0.972	0.037	

Conclusions:

- 1. TP53 mutation status is independently associated with improved survival from immunotherapy in patients with urothelial cancers.
- 2. Mutation of TP53 in urothelial cancers facilitates CD8⁺ T-cell infiltration, activates T-effector and boosts PD-L1 expression.
- 3. Additional investigations are warranted to evaluate the mechanisms that link TP53 mutations and immunotherapy response.

Statements:

1. Competing interests

The authors declare that they do not have any conflicts of interest related to this study.

2. Acknowledgement

We appreciate the free access of multiple-dimensional types of data retrieved in this study from cBioPortal for CANCER GENOMICS.

3. Founding

No.

