Methods of protein quality and quantity analysis for nutritional labeling and to verify protein claims Sneh D. Bhandari Independent Consultant Crete, IL AOCS Virtual Annual Meeting, Week of 29th June 2020 #### **AGENDA** - Background Protein/AA - Health Effects of proteins in diet - Protein & Amino Acid analysis - Protein Quality - Protein Quality- PDCAAS & DIAAS - Protein Nutrition Labeling & Claims # Main Functions of Proteins in Body - Structural components - Growth, development& repair - PhysiologicalMetabolic , Immune &Muscle functions - Reproduction - Energy production - •O2 & nutrient transport - Blood clotting, - ·Fluid balance, - Vision, - Hormones, antibodies, enzyme # **Amino Acids – Protein quality definer** | Indispensable Amino acid (IAA) | Conditional
Dispensable AA | Dispensable AA | |--------------------------------|-------------------------------|----------------| | Leucine | Arginine | Alanine | | Isoleucine | Cysteine | Aspartic Acid | | Valine | Glutamine | Aspargine | | Lysine | Glycine | Glutamic Acid | | Threonine | Proline | Serine | | Methionine | Tyrosine | | | Tryptophan | | | | Phenylalanine | | | | Histidine | | | ### **Special Functions of Branched Chain Amino Acids** EAA – Leu, Ileu & Val : Branched chain AA BCAAs promotes muscle protein synthesis in athletes Recovery of muscle damage & fatigue due to exercise Stimulate muscle protein synthesis in older individuals also Source: Fujita and Volpi (2006). J Nutr. 36: 277S; Holeček (2018) Nutrition & Metabolism 15:33 # Features of animal and plant protein sources | Features | Animal Protein | Plant Proteins | | |--------------------------------|---|------------------------|--| | Health Risk
Factors | Substitution of Red processed meat by plant proteins> lower CVD mortality | | | | Saturated Fats & Cholesterol | High | Low & None | | | High Sodium | Processed meats | Generally not an issue | | | IAA | Complete proteins | Not of enough all IAA | | | Dietary Fiber & Phytochemicals | Plant foods rich in dietary fiber, phytonutrients | | | | Micronutrients | Most vit (- Vit D) & minerals high in plant foods; Vit. A, D, B6, B12 + certain minerals in some AF | | | | Antibiotic resistance | Possibility of animal-to-human transmission of antibiotic resistance AF | | | Source: Source: Richter et.al. (2015) Adv. Nutr. 6:712; Marshal & Levy (2011) Clin. Microbiol. Rev. 24: 718 # Health impact of plant protein Too much red & processed meat associated with CVD Mortality Plant-based diets leads to lower risks of CVD, other diseases & mortality Plant based foods environmentally more sustainable *Source: Song et.al. (2016) AMA Intern Med. 176:1453; Melina et al (2016) J Acad Nutr Diet. 116:1970 # Consumer demand of new protein foods with good quality & quantity Consumers like plant food - due to their health benefits & AF's global warming concerns. Food industry developing new plant protein foods Determn of protein quantity & quality - important in protein nutrition. Protein = Nitrogn (g) by Kjeldahl/ Combustn X Prot. CF. NPN correction if helps i.e. sea food, insects etc. Protein quality evaluation requires AA (IAA) analysis of & protein digestibilit y in food. #### **AOAC & other Kjeldahl methods of protein estimation** | Matrix | Factor# | AOAC
Method | Matrix | Factor# | AOAC
Method | |-----------------------|---------------|-------------------|----------------------------|---------|----------------| | Flour | 5.70 | 920.87 | Dairy | 6.38 | 930.29 | | Grain (- wheat) | 6.25 | 979.09 | Milk | 6.38 | 991.20 | | Wheat | 5.70 | 979.09 | Ice-cream | 6.38 | 930.33 | | Bread | 5.70 | 950.36 | Frozen deserts, | 6.38 | 930.33 | | Maccaroni products | 5.70 | AOAC
930.25 | Milk Chocolate | 6.38 | 939.02 | | Baked Products | 5.70 | 935.39 | Almond | 5.18 | 950.48 | | Soybean | 5.71
(FAO) | AOCS Bc 4-
41 | Peanuts Brazil
Nuts | 5.46 | 950.48 | | Pulses | 6.25 | ISO
20483:2006 | Other tree
Nuts Coconut | 5.30 | 950.48 | | Oil seed byproducts | 6.25 | AOCS Ba 4d-
90 | Fruit | 6.25 | 920.152 | | Meat | 6.25 | 981.10 | Beer | 6.25 | 920.53 | N to protein calculation by multiplication factor # Amino Acid Analysis of Proteins: Acid hydrolysis & HPLC Protein Hydrolyzed to release peptide bound AA in 6M HCl for 18-24 h @110°C in vacuo or under N2 - Released AA analyzed commonly by HPLC SH-AA destroyed: Protect with performic oxidation prior to hydrolysis (AOAC 985.28) Try destroyed: do Alkaline (AOAC 988.15) or Enzymatic hydrolysis (AOAC 2017.03) Asn \rightarrow Asp: Analyze sum of Asn + Asp. Gln → Glu: Analyze sum of Gln + Glu Other AA: Phenol; thioglycolic acid for SH-AA #### **Amino Acid Analysis commonly performed by HPLC** AA separated by IC detected by post column derivatization, common: Ninhydrin, PITC, OPA Precolumn derivatization with PITC, OPA, AQC → RPHPLC. AOAC 2018.06 -UV AOAC 2019.09 -FI Detection: OPA & AQC derv by Fluorescence; PITC, AQC also UV, Ninhydrin Vis Try - RP-HPLC UV/Fluorescence AOAC 988.15 (UV); AOAC 2017.03 (FI) PITC = Phenyl isothiocyanate; OPA = o-phthaldialdehyde; AQC = 3-aminopyridyl-N-hydroxysuccinimidyl carbamate #### Protein Quality is important in protein nutrition Nutritional labels from different foods - % DV for protein not often listed – one reason, needs quality check to qualify Method of Protein Quality Evaluation for foods > 1 year ages: Protein Digestibility Corrected Amino Acid Score (PDCAAS) PDCAAS is AA score calculation = Relative IAA amount corrected for protein digestibility (PD) Protein (g/serving) mandatory for labeling; %DV (Voluntary), reqird for food of 1-3 years age or protein claims & needs gm x PDCCAS Protein Efficiency Ratio (PER) is quality tool for food ≤1 year. Canada's Protein Rating is PER based. PDCAAS allowed if no PER ## **PDCASS** and Amino Acid Score Estimation | Method/Action | Specification | |---|---| | Estimate amount of protein & IAA | Use N to protein conversion factor specified in applicable AOAC methods | | Compare conc. of each IAA | IAA in least amount vs | | (Meth + Cys & Phe +Tyr) | FAO/WHO 1991 reference | | mg/g protein against | pattern (2-5 yr child), limiting | | reference pattern | amino acid | | Relative least amount of IAA in protein | Amino Acid Score (AS) | | PDCAAS = AS x Protein Digestibility | Values >1 truncated to 1. PD commonly estimated by Rat fecal N balance method | #### True Digestibility Value of proteins/amino acids Rat fecal-balance (% of N intake retained) = Ingested N – (Fecal N - endogenous N loss). PD values (Human or Rat) of foods available (literature); if not = Determine PD of a product can be calculated by a weighted average of ingredient's PD Pig Ileal Digestibility of AA: FAO suggested (2013) for DIAAS*. Data base developing. In vitro assays are available, no particular method recommended by FAO/WHO. Megazyme offers a kit for in vitro assay *DIAAS = Digestible Indipensable Amino Acid Score # PDCAAS Calculation Example | ΓΛΛ | EAA in Sample | EAA in Sample | EAA Reference | EAA in | |------------------|---------------|---------------|---------------|------------| | EAA | (g/100g) | mg/g protein | Pattern mg/g | sample/Ref | | | (8/ 2008) | 6/ 8 6. 6.6 | protein | Pattern | | Isoleucine | 1.17 | 46.1 | 28 | 1.65 | | Leucine | 1.96 | 77.2 | 66 | 1.17 | | Lysine | 1.64 | 64.6 | 58 | 1.11 | | Total SAA | 0.46 | 18.1 | 25 | 0.72 | | Total AAA | 1.74 | 68.6 | 63 | 1.09 | | Threonine | 0.85 | 33.5 | 34 | 0.99 | | Tryptophan | 0.175 | 6.9 | 11 | 0.63 | | Valine | 1.22 | 48.1 | 35 | 1.37 | | Met | 0.19 | Amino A | cid Score | 0.63 | | Cysteine | 0.27 | Protein D | igestibility | 0.86 | | Phe | 1.13 | PDCAAS = A | A Score x PD | | | Tyr | 0.61 | PDCAAS = | 0.63 x 0.86 | 0.54 | | Protein (g/100g) | 25.38 | | | | | | | | | 15 | ## Protein Quality – PDCAAS Issues addressed by DIAAS | Concerns about PDCAAS | FAO recommended DIAAS (2013) to address PDAAS concerns | |---|---| | PD estimation based on rat fecal N estimate | Sampling done from Pig ileum | | PD less accurate | Estimated digestibility of each IAA | | PDCAAS >1 truncated to 1 | Reports values >1, no underestimation | | AA requirements of 3-5 years (Except infant) | 3 patterns - Infants (6 months),
Children (6 months to 3 years) &
Others > 3 years. | | FDA declined in 2016 to
replace PDCAAS by
DIAAS | Insufficient IAA digestibility data of different foods; Not convinced about suggested AA requirement patterns | #### PDCAAS and DIAAS of common animal foods # PDCAAS and DIAAS of common plant foods # **Protein Nutrition Labeling** | # | FDA Guidelines for Protein Labeling | |---|---| | 1 | N to protein conversion factor of 6.25 or in AOAC method of protein analysis. | | 2 | Report protein in grams/serving to the nearest gram | | 3 | Amount /Serving < 0.5 gram, may be labeled as 0. | | 4 | Voluntary declaration of % DV for protein on label | | 5 | % DV labeling required if Protein Claim made; Food for infants/children ≤3 yrs. | | 6 | New Nutritional Labeling regulation of 2016 – No changes in protein declaration | | 7 | Corrected protein g/serving = g protein/serv X PDCAAS | | 8 | % DV= Corrected of protein (g) per serving/ RDI or DRV X 100 (to nearest 1% increment). | | 9 | DRV = 50 g(adult). RDI = 11 g (≤ 1 yr) | # Labeling Protein Pork Rinds Label –"Not a significant source of protein" **Original Label** **New Label** # Nutrition Facts Serving Size 2/3 cup (55g) Servings Per Container About 8 Amount Per Serving Calories 230 Calories from Fat 72 % Daily Value* Cholesterol 0mg 0% Sodium 160mg 7% Total Carbohydrate 37g 12% Dietary Fiber 4g 16% Sugars 1g Protein 3g Vitamin A 10% Vitamin C 8% Calcium 20% Iron 45% * Percent Daily Values are based on a 2,000 calorie diet. Your daily value may be higher or lower depending on your calorie needs. | your calone needs. | Calories: | 2,000 | 2,500 | |--------------------|-----------|---------|---------| | Total Fat | Less than | 65g | 80g | | Sat Fat | Less than | 20g | 25g | | Cholesterol | Less than | 300mg | 300mg | | Sodium | Less than | 2,400mg | 2,400mg | | Total Carbohydrate | | 300g | 375g | | Dietary Fiber | | 25g | 30g | | Nutrition Facts 8 servings per container Serving size 2/3 cup (55g) | | |---|------------| | Amount per serving Calories | 230 | | % Da | ily Value* | | Total Fat 8g | 10% | | Saturated Fat 1g | 5% | | Trans Fat 0g | | | Cholesterol 0mg | 0% | | Sodium 160mg | 7% | | Total Carbohydrate 37g | 13% | | Dietary Fiber 4g | 14% | | Total Sugars 12g | | | Includes 10g Added Sugars | 20% | | Protein 3g | | | Vitamin D 2mcg | 10% | | Calcium 260mg | 20% | | Iron 8mg | 45% | | Potassium 235mg | 6% | | * The % Daily Value | (DV) tells you how much a nutrient in | |----------------------|---| | a serving of food of | contributes to a daily diet. 2,000 calories | | a day is used for o | general nutrition advice. | | Serving Size 1/2 oz. (14g) Servings Per Container 3.5 | | | |--|--|--| | Amount Per Serving | | | | Calories 60 Calories from Fat 15 | | | | % Daily Value* | | | | Total Fat 2g 3% | | | | Saturated Fat Og 0% | | | | Cholesterol 5mg 2% | | | | Sodium 350mg 15 % | | | | Total Carbohydrate <1g 0% | | | | Protein 9g Not a significant source of Protein | | | | Not a significant source of Dietary Fiber, Sugars, Vitamin A, Vitamin C, Calcium and Iron. | | | | *Percent Daily Values are based on a 2,000 calorie diet. | | | INGREDIENTS: Pork Rinds, Salt, Maltodextrin, Monosodium Glutamate, Flavorings, Dextrin #### **Protein Quality and Nutrition Labeling -** | Age group | PDCAAS Score | Nutr. Label column "Percent Daily Value" | |----------------------------|--------------------|---| | 4 years to adult | <20 | "not a significant | | >1 years to < 4 yr | <40 | source of protein," | | 4 years to adult | <u>></u> 20 | nearest whole percent placed, <u>optional</u> <u>if no protein claim made</u> | | Children 1 through 3 years | <u>></u> 40 | nearest whole percent must be placed | | infants through 12 | Relative PER <40% | "Not a significant source | | months | of reference * | of protein" | | | Relative PER ≥ 40% | nearest whole percent | | months | of reference* | must be placed | Source: e-CFR data is current as of April 1, 2019, Title 21 \rightarrow Chapter I \rightarrow Subchapter B \rightarrow Part 101 \rightarrow Subpart A \rightarrow §101.9; * reference = Standard Casein #### **Protein Nutrition Labeling – Common Nutritional claims** | Claim | Protein (% of DRV) per RACC* | |--|---| | High, Rich In, or
Excellent Source Of -
Protein | ≥ 20% | | Good Source, Contains, or Provides - Protein | 10-19% | | More, Fortified,
Enriched, Added,
Extra, or Plus | ≥10% than an appropriate reference food | ^{*}RACC = reference amount customarily consumed ### **Protein spiking in Sports Nutrition Industry** Protein in food for nutritional labeling often determined by its N estimation. Protein spiking is addition of NPN to a product to inflate its label value & possibly make a claim The sports nutrition industry has seen some instances of the practice of "protein spiking". In these cases NPN in the supplement/food is not adjusted in protein estimation. Companies have been sued for selling supplements with NPN inflated protein label values. Hi-Tech Pharmaceuticals Won an Appeal at 11th Circuit against AllMax for Protein Spiking (2018). #### Review A trend of high demand of healthy (plant) quality protein foods. Protein & IAA analyzed for nutr. labeling, Protein often by N analysis. Protein AA released by hydrolysis -> analyzed by HPLC. Nutritional quality of protein evaluated by PDCAAS based on AA score & PD. Used for corrected amount of protein/SS. DIAAS a quality tool proposed to address PDCAAS shortfalls but it has not been adopted yet in the lack of data base & consensus. Protein (g/ss) declared in nutr. label; %DV (Voluntary), must for food of 1-3 yrs; protein claims; PDCAAS adjusted protein needed. PER estimates protein quality of food for ≤12 mnths. Canada's food Protein Rating - PER based. PDCAAS used in the lack of PER. # THANK YOU