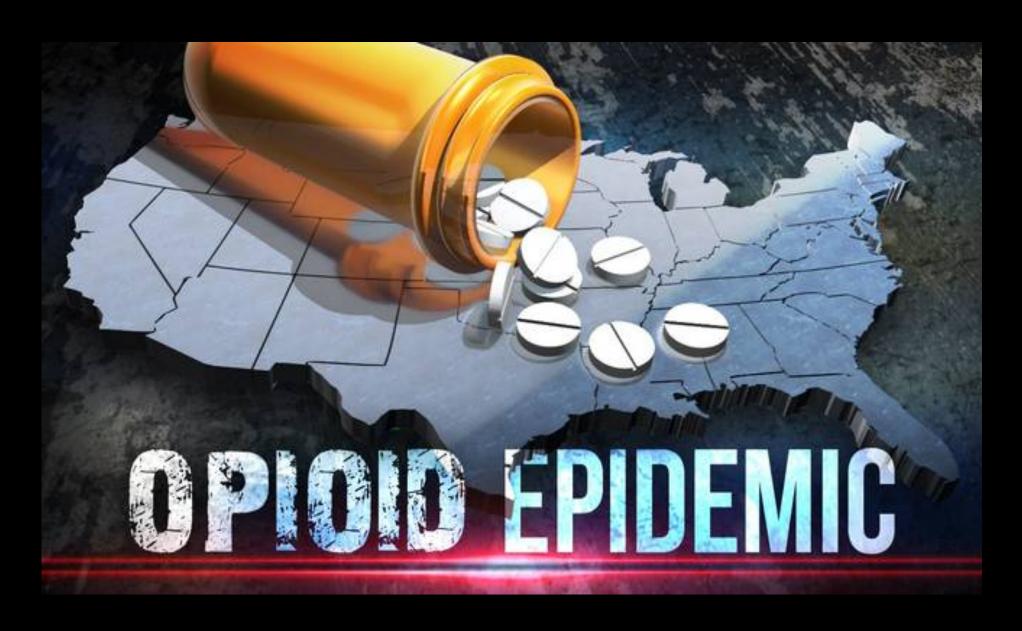


# A Perfect Storm: How to Run an Acute Pain Service in Times of Opioid Crisis and COVID-19 Pandemic

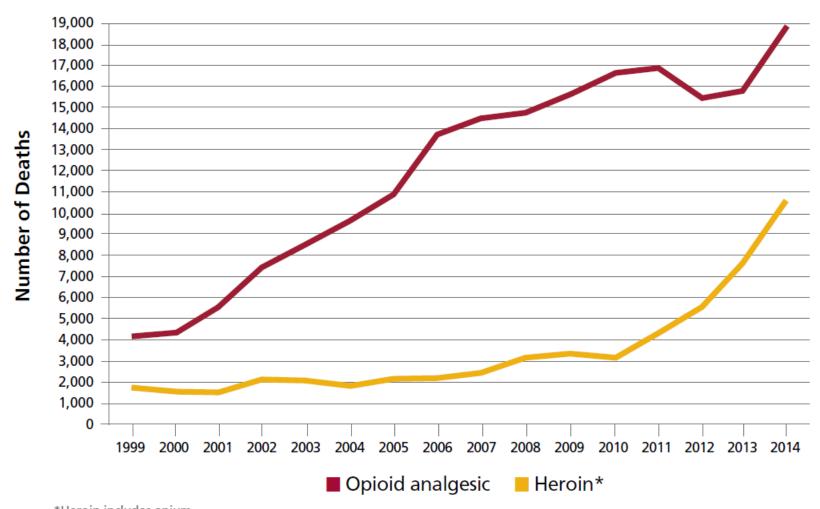
Ralf E. Gebhard, MD, FASA

# Disclosure


■ None



# **Learning Objectives**

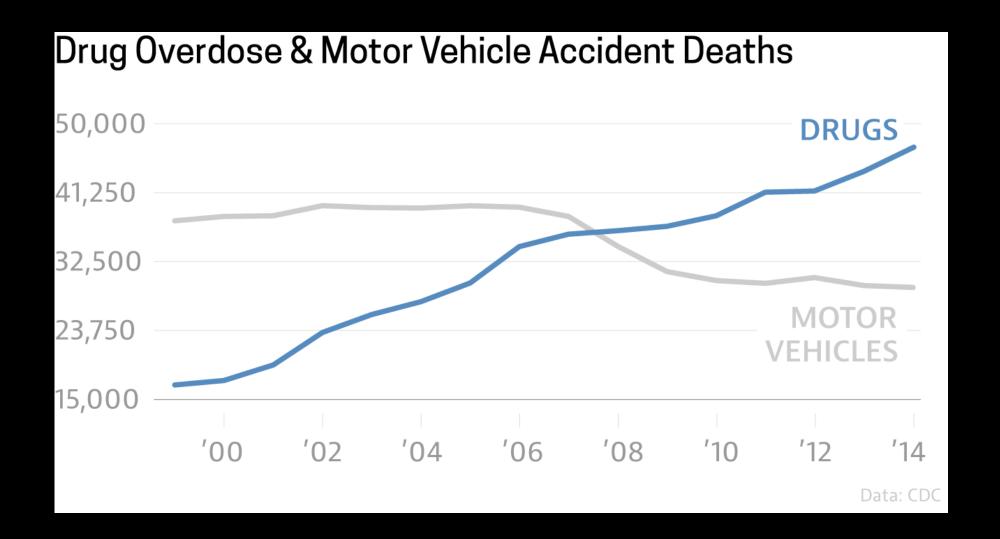

- Review non-opioid alternatives for acute pain management in the perioperative setting
- Identify strategies for perioperative management of patients on opioid use disorder medications
- Review challenges for acute pain management in COVID-19 patients
- Discuss PROs and CONs for peripheral nerve blocks as anesthetic technique in COVID-19 patients





# Painveek.

# U.S. Deaths from Opioids & Heroin: 1999-2014




\*Heroin includes opium.

1999-2013 Statistics: CDC/NCHS NVSS Multiple Cause of Death Files.

2014 Statistics: American Society of Addiction Medicine (ASAM). Opioid Addiction: 2016 Facts & Figures.







## On an average day in the U.S.:



More than 650,000 opioid prescriptions dispensed<sup>1</sup>



**3,900 people** initiate nonmedical use of prescription opioids<sup>2</sup>



**580 people** initiate heroin use<sup>2</sup>



**78 people** die from an opioid-related overdose\*3

\*Opioid-related overdoses include those involving prescription opioids and illicit opioids such as heroin

Source: IMS Health National Prescription Audit<sup>1</sup> / SAMHSA National Survey on Drug Use and Health<sup>2</sup> / CDC National Vital Statistics System<sup>3</sup>



### **Economic Impact of the Opioid Epidemic:**

- 55 billion in health and social costs related to prescription opioid abuse each year<sup>1</sup>
- \$ 20 billion in emergency department and inpatient care for opioid poisonings<sup>2</sup>

**Source:** Pain Med. 2011;12(4):657-67.1

2013;14(10):1534-47.2



# Opioid Epidemic – Causes?

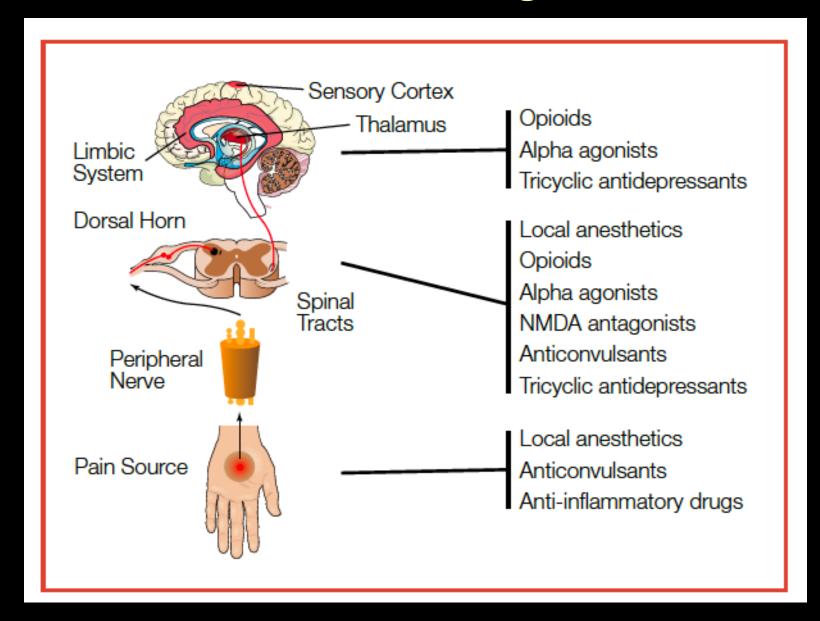
- Overprescribing after surgery
- Pharmaceutical industry (extended release oxycodone)
- JCAHO (pain 5<sup>th</sup> vital sign)
- Patient factors (e.g., depression)



# **Experts Recommendation to Manage Postsurgical Pain:**

The Joint Commission<sup>3</sup>

"Use an individualized, multimodal treatment plan to manage pain"


National Action Plan to Prevent Adverse Drug Events<sup>4</sup>

"Federal agencies should promote...nonopioid pharmacological therapies...as part of an overall pain management plan"

American Society of Anesthesiologists Task Force on Acute Pain Management<sup>5</sup>

"Whenever possible, anesthesiologists should use multimodal pain management therapy"







**OVERALL GOAL:** 

# Minimizing/Sparing Opioids



**OVERALL GOAL:** 

# Minimizing/Sparing Opioids

While avoiding significant additional side effects



What tools do we have available?



What is the best timing for administration pre/intra/post?

Are certain surgeries more susceptible to certain treatments?



# Preoperative "Preemptive" Therapeutics



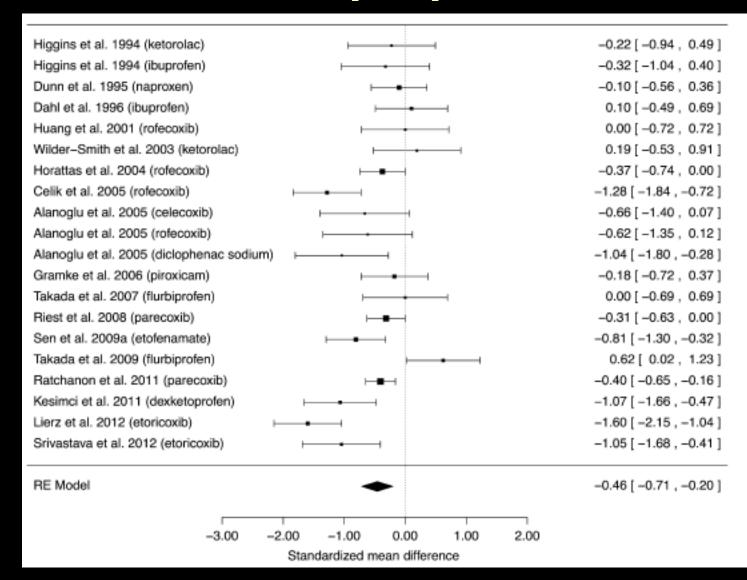


**REVIEW ARTICLE** 

# Preoperative preemptive drug administration for acute postoperative pain: A systematic review and meta-analysis

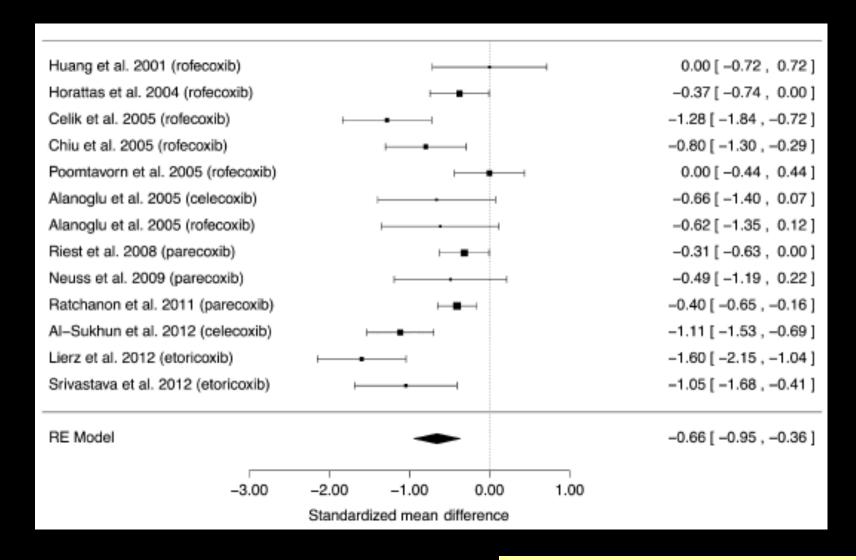
R.-R. Nir<sup>1,2</sup>, H. Nahman-Averbuch<sup>1,2</sup>, R. Moont<sup>1,2</sup>, E. Sprecher<sup>1,2</sup>, D. Yarnitsky<sup>1,2</sup>

- 1 Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- 2 Laboratory of Clinical Neurophysiology, The Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel


511 articles screened

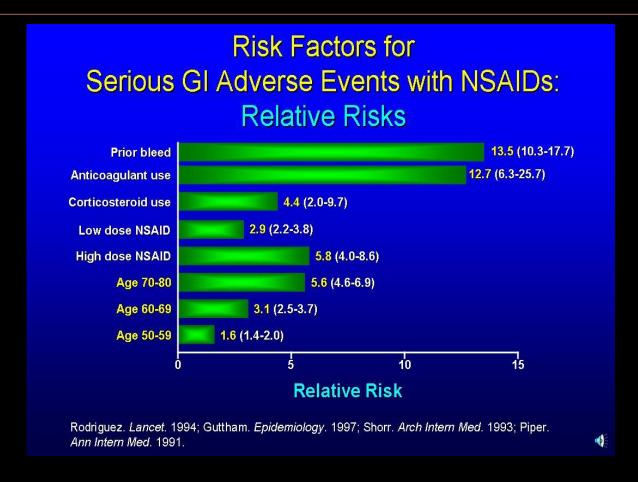
39 articles included

Data from 3172 patients




# **All NSAIDS – Postop Opioid Consumption**






# **COX-2 Inhibitors – Postop Opioid Consumption**





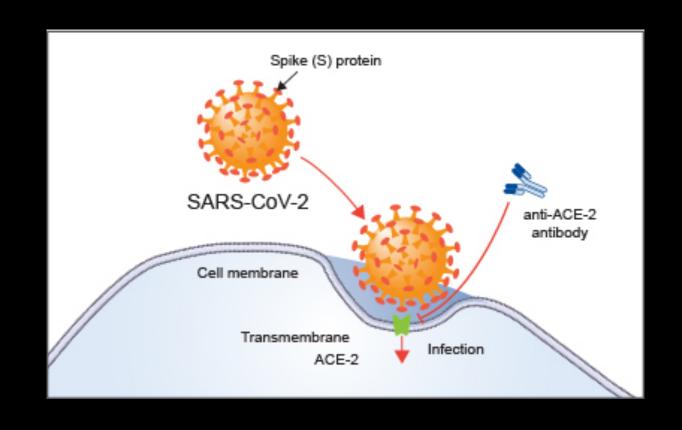
# **NSAIDs – Bleeding Risk**



#### **Relative Risk by NSAID**

|   | Celecoxid  | 1.42  |
|---|------------|-------|
| • | Ibuprofen  | 2.69  |
| • | Diclofenac | 3.89  |
| • | Meloxicam  | 4.15  |
| • | Naproxen   | 5.63  |
| • | Piroxicam  | 9.93  |
|   | Ketorolac  | 14.54 |




Special article

# NSAIDs for analgesia in the era of COVID-19

Daniel L Herzberg , <sup>1,2</sup> Harry P Sukumaran, <sup>1</sup> Eugene Viscusi <sup>3</sup>



- SARS corona virus-2 infects cells by binding to ACE-2 (common in cardiovascular, GI and renal system)
- Ibuprofen could increase levels of cellular expressed ACE-2 and result in more severe disease





### THE LANCET

March11,2020

#### Correspondence

#### Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?

The most distinctive comorbidities

of 32 non-survivors from a group of 52 intensive care unit patients with novel coronavirus disease drugs increases the risk of developing 2019 (COVID-19) in the study by Xiaobo Yang and colleagues1 were cerebrovascular diseases (22%) and diabetes (22%). Another study<sup>2</sup> ncluded 1099 patients with conirmed COVID-19, of whom 173 had severe disease with comorbidities of nypertension (23-7%), diabetes mellitus 16-2%), coronary heart diseases aspect that should be investigated (2-3%). In a third study, 3 of 140 patients who were admitted to hospital with COVID-19, 30% had hypertension and 12% had diabetes. Notably, the most requent comorbidities reported in these three studies of patients with COVID-19 are often treated with angiotensin-converting enzyme (ACE) nhibitors; however, treatment was not assessed in either study.

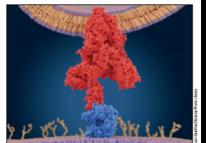
Human pathogenic coronaviruses severe acute respiratory syndrome coronavirus [SARS-CoV] and SARS-OV-2) bind to their target cells through angiotensin-converting enzyme 2 (ACE2), which is expressed by epithelial cells of the lung, intestne, kidney, and blood vessels.4 The expression of ACE2 is substantially ACE inhibitors and angiotensin II type-I blockers increased ACE2 expression ARBs, which results in an upregulation patients.

of ACE2.5 ACE2 can also be increased by thiazolidinediones and ibuprofen. These data suggest that ACE2 expression is increased in diabetes and treatment with ACE inhibitors and ARBs increases ACE2 expression. Consequently, the increased expression of ACE2 would facilitate infection with COVID-19. We therefore hypothesise that diabetes and hypertension treatment with ACE2-stimulating severe and fatal COVID-19.

If this hypothesis were to be confirmed, it could lead to a conflict regarding treatment because ACE2 reduces inflammation and has been suggested as a potential new therapy for inflammatory lung diseases, cancer, diabetes, and hypertension. A further 5-8%), and cerebrovascular disease is the genetic predisposition for an increased risk of SARS-CoV-2 infection, which might be due to ACE2 polymorphisms that have been linked to diabetes mellitus, cerebral stroke, and hypertension, specifically in Asian populations. Summarising this information, the sensitivity of an individual might result from a combination of both therapy and ACE2 polymorphism.

We suggest that patients with cardiac diseases, hypertension, or diabetes, who are treated with ACE2increasing drugs, are at higher risk for severe COVID-19 infection and, therefore, should be monitored for ACE2-modulating medications, such as ACE inhibitors or ARBs. Based on a PubMed search on Feb 28, 2020, we ncreased in patients with type 1 or did not find any evidence to suggest type 2 diabetes, who are treated with that antihypertensive calcium channel eceptor blockers (ARBs). Hypertension or activity, therefore these could be a s also treated with ACE inhibitors and suitable alternative treatment in these

Lei Fang, George Karakiulakis,


Pulmonary Cell Research and Pneumology Department of Biomedicine and Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland (LF, MR); and Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece (GK)

- Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; published online Feb 24. https://doi.org/10.1016/S2213 2600/20/30079-5
- Guan W, Ni Z, Hu Y, et al. Clinical characteristics N Fnal I Med 2020, nublished online Feb 28 DOI:10.1056/NEIMoa2002032
- Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy 2020; published online Feb 19. DOI:10.1111/ all.14238.
- Wan Y, Shann I, Graham P, Raric RS, Li F Receptor recognition by novel coronavir from Wuhan: an analysis based on decadelong structural studies of SARS. J Virology 2020 published online Jan 29. DOI:10.1128/
- LiXC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017;



Published Onlin March 11, 2020 https://doi.org/10.1016/ 52213-2600(20)30116-8

This online publication ha been corrected. The corrected version first appeared at thelancet com/ respiratory on May 18, 2020





Original Research

# Ibuprofen Attenuates Cardiac Fibrosis in Streptozotocin-Induced Diabetic Rats

```
Qiao W.a-c · Wang C.d · Chen B.c · Zhang F.b · Liu Y.b · Lu Q.b · Guo H.b · Yan C.c · Sun H.c · Hu G.a · > Yin X.a, b
```

Author affiliations

Keywords: > Diabetes > Cardiac fibrosis > Ibuprofen > Angiotensin-converting enzyme > Angiotensin-converting enzyme 2

Cardiology 2015;131:97-106

> https://doi.org/10.1159/000375362



- Ratio ACE: ACE 2 was raised in diabetic rats
- This was reversed by Ibuprofen
- Ibuprofen relatively raised ACE-2





#COVID—19 | La prise d'anti-inflammatoires (ibuprofène, cortisone, ...) pourrait être un facteur d'aggravation de l'infection. En cas de fièvre, prenez du paracétamol.

Si vous êtes déjà sous anti-inflammatoires ou en cas de doute, demandez conseil à votre médecin.

6:38 AM · Mar 14, 2020 · Twitter for iPhone

45.3K Retweets and comments 39.2K Likes







# The use of non-steroidal antiinflammatory drugs (NSAIDs) in patients with COVID-19

Scientific Brief

19 April 2020





"At present there is no evidence of severe adverse events, acute healthcare utilization, long-term survival, or quality of life in patients with COVID-19, as a result of the use of NSAIDs"





> Clin Infect Dis. 2020 Jul 27;ciaa1056. doi: 10.1093/cid/ciaa1056. Online ahead of print.

Association between NSAIDs use and adverse clinical outcomes among adults hospitalized with COVID-19 in South Korea: A nationwide study

```
Han Eol Jeong <sup>1</sup>, Hyesung Lee <sup>1</sup>, Hyun Joon Shin <sup>2</sup>, Young June Choe <sup>3</sup>, Kristian B Filion <sup>4</sup> <sup>5</sup>, Ju-Young Shin <sup>1</sup> <sup>6</sup>
```

Affiliations + expand

PMID: 32717066 DOI: 10.1093/cid/ciaa1056

South Korea's National Database COVID-19
Hospitalized patients: 1824
NSAIDs Users: 354



> Clin Infect Dis. 2020 Jul 27;ciaa1056. doi: 10.1093/cid/ciaa1056. Online ahead of print.

Association between NSAIDs use and adverse clinical outcomes among adults hospitalized with COVID-19 in South Korea: A nationwide study

```
Han Eol Jeong <sup>1</sup>, Hyesung Lee <sup>1</sup>, Hyun Joon Shin <sup>2</sup>, Young June Choe <sup>3</sup>, Kristian B Filion <sup>4 5</sup>, Ju-Young Shin <sup>1 6</sup>
```

Affiliations + expand

PMID: 32717066 DOI: 10.1093/cid/ciaa1056

"NSAIDs use was associated with increased risk of the primary composite outcome." (in-hospital death, ICU admission, ventilator use, sepsis)



My opinion:

err on the side

of caution



#### Journal of Pain Research



open access to scientific and medical research



ORIGINAL RESEARCH

# Use of preoperative gabapentin significantly reduces postoperative opioid consumption: a meta-analysis

Sudha Arumugam<sup>1</sup> Christine SM Lau<sup>1,2</sup> Ronald S Chamberlain<sup>1-3</sup>

<sup>1</sup>Department of Surgery, Saint Barnabas Medical Center, Livingston, NJ, USA; <sup>2</sup>Saint George's University School of Medicine, Grenada, West Indies; <sup>3</sup>Department of Surgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA Anticonvulsant

Mechanism of action: unknown



### 812 Articles screened

17 RCTs selected

1791 patients



# **Opioid Consumption**

| Study name                       | St               | atistics for   | each study     |         | Std diff in mean and 95% CI |          |      |      |      |                |
|----------------------------------|------------------|----------------|----------------|---------|-----------------------------|----------|------|------|------|----------------|
|                                  | Std diff in mean | Lower<br>limit | Upper<br>limit | P-value |                             |          |      |      |      | Relative weigh |
| Pandey et al <sup>23</sup>       | -1.013           | -1.570         | -0.457         | 0.000   |                             |          | _    |      |      | 5.88           |
| Pandey et al34                   | -3.312           | -3.657         | -2.967         | 0.000   | -                           | -   _    | _    |      |      | 6.0            |
| Turan et al35                    | -3.259           | -4.105         | -2.413         | 0.000   | <b>←</b>                    | <u> </u> |      |      |      | 5.53           |
| Turan et al36                    | -2.663           | -3.425         | -1.902         | 0.000   | -                           |          |      |      |      | 5.6            |
| Radhakrishnan et al37            | 0.042            | -0.464         | 0.549          | 0.870   |                             |          | -    |      |      | 5.93           |
| Adam et al38                     | -1.699           | -2.422         | -0.976         | 0.000   |                             | _        |      |      |      | 5.70           |
| Al-Mujadi et al39                | -1.626           | -2.159         | -1.093         | 0.000   |                             | +        |      |      |      | 5.9            |
| Pandey et al <sup>40</sup>       | -3.259           | -3.637         | -2.881         | 0.000   | -                           | -        |      |      |      | 6.0            |
| Montazeri et al41                | -0.903           | -1.395         | -0.411         | 0.000   |                             | -        |      |      |      | 5.9            |
| Grover et al <sup>42</sup>       | -1.359           | -2.002         | -0.715         | 0.000   |                             | -        | -    |      |      | 5.79           |
| Srivastava et al <sup>43</sup>   | -1.819           | -2.245         | -1.394         | 0.000   |                             | -        |      |      |      | 6.0            |
| Moore et al <sup>22</sup>        | 0.383            | -0.214         | 0.980          | 0.209   |                             |          | +    | -    |      | 5.84           |
| Deniz et al44                    | -0.303           | -0.856         | 0.249          | 0.282   |                             |          |      |      |      | 5.89           |
| Short et al <sup>45</sup>        | -0.644           | -1.082         | -0.205         | 0.004   |                             | -        |      |      |      | 5.99           |
| Short et al <sup>45</sup>        | -0.600           | -1.037         | -0.163         | 0.007   |                             | -        |      |      |      | 5.99           |
| Kinney et al <sup>21</sup>       | -0.059           | -0.417         | 0.300          | 0.749   |                             |          | -    |      |      | 6.0            |
| Bharti et al <sup>20</sup>       | -0.978           | -1.634         | -0.322         | 0.003   |                             |          |      |      |      | 5.78           |
|                                  | -1.350           | -1.965         | -0.735         | 0.000   |                             |          | -    |      |      |                |
|                                  |                  |                |                |         | -4.00                       | -2.00    | 0.00 | 2.00 | 4.00 |                |
| Favors gabapentin Favors control |                  |                |                |         |                             |          |      |      |      |                |



# **Type of Surgery**

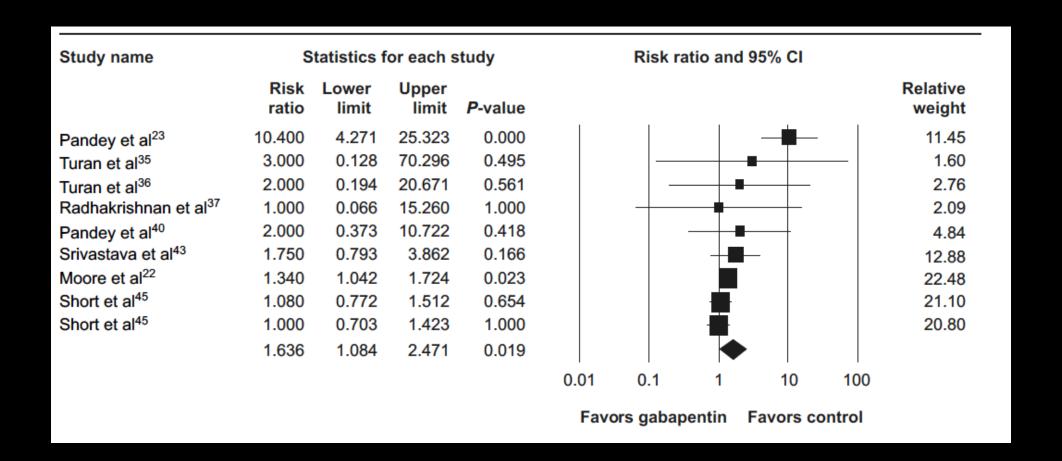
| Group by               | Study name                     | Statistics for each study |                |                |         |          | Std diff in mean and 95% CI |          |      |      |                 |  |
|------------------------|--------------------------------|---------------------------|----------------|----------------|---------|----------|-----------------------------|----------|------|------|-----------------|--|
| ype of surgery         |                                | Std diff in mean          | Lower<br>limit | Upper<br>limit | P-value |          |                             |          |      |      | Relative weight |  |
| Abdominal hysterectomy | Turan et al <sup>35</sup>      | -3.259                    | -4.106         | -2.413         | 0.000   | <b>←</b> |                             |          |      |      | 100.00          |  |
| Abdominal hysterectomy |                                | -3.259                    | -4.106         | -2.413         | 0.000   | <        | <b>—</b>                    |          |      |      |                 |  |
| Cesurcen continu       | Moore et al <sup>22</sup>      | 0.383                     | -0.214         | 0.990          | 0.209   |          |                             | +=-      | .    |      | 29.93           |  |
| Cesarean section       | Short et al <sup>45</sup>      | -0.644                    | -1.082         | -0.205         | 0.004   |          | -                           | -        |      |      | 35.01           |  |
| Cesarean section       | Short et al <sup>45</sup>      | -0.600                    | -1.037         | -0.163         | 0.007   |          |                             | ■        |      |      | 35.06           |  |
| Cocarcall Scotton      |                                | -0.321                    | -0.902         | 0.260          | 0.279   |          |                             |          |      |      |                 |  |
| Cholecystectomy        | Pandey et al34                 | -3.312                    | -3.657         | -2.967         | 0.000   | -        | -                           |          |      |      | 33.72           |  |
| Cholecystectomy        | Pandey et al <sup>40</sup>     | -3.259                    | -3.637         | -2.881         | 0.000   | -        | -                           |          |      |      | 33.39           |  |
| Cholecystectomy        | Srivastava et al <sup>43</sup> | -1.819                    | -2.245         | -1.394         | 0.000   |          | +■-                         |          |      |      | 32.88           |  |
| Cholecystectomy        |                                | -2.803                    | -3.708         | -1.899         | 0.000   |          |                             |          |      |      |                 |  |
| Orthopedic surgery     | Pandey et al <sup>23</sup>     | -1.013                    | -1.570         | -0.457         | 0.000   |          |                             | <b>-</b> |      |      | 25.23           |  |
| Orthopedic surgery     | Radhakrishnan et al37          | 0.042                     | -0.464         | 0.549          | 0.870   |          |                             | -        |      |      | 26.01           |  |
| Orthopedic surgery     | Adam et al38                   | -1.699                    | -2.422         | -0.976         | 0.000   |          | <del></del>                 | -        |      |      | 22.54           |  |
| Orthopedic surgery     | Montazeri et al41              | -0.903                    | -1.395         | -0.411         | 0.000   |          | –                           | ■—       |      |      | 26.22           |  |
| Orthopedic surgery     |                                | -0.864                    | -1.536         | -0.193         | 0.012   |          |                             |          |      |      |                 |  |
| Prostatectomy          | Deniz et al44                  | -0.303                    | -0.856         | 0.249          | 0.282   |          |                             |          |      |      | 100.00          |  |
| Prostatestomy          |                                | -0.303                    | -0.856         | 0.249          | 0.282   |          |                             |          |      |      |                 |  |
| Spinal surgery         | Turan et al <sup>36</sup>      | -2.663                    | -3.425         | -1.902         | 0.000   | _        |                             |          |      |      | 100.00          |  |
| Spinal surgery         |                                | -2.663                    | -3.425         | -1.902         | 0.000   | <b>-</b> |                             |          |      |      |                 |  |
| Thoracotomy            | Kinney et al <sup>21</sup>     | -0.059                    | -0.417         | 0.300          | 0.749   |          |                             | -        |      |      | 100.00          |  |
| Thoracotomy            | -                              | -0.059                    | -0.417         | 0.300          | 0.749   |          |                             | •        |      |      |                 |  |
| Thyroid surgery        | Al-mujadi et al39              | -1.626                    | -2.159         | -1.093         | 0.000   |          | +                           | Ī        |      |      | 100.00          |  |
| Thyroid surgery        |                                | -1.626                    | -2.159         | -1.093         | 0.000   |          |                             |          |      |      |                 |  |
| Total mastectomy       | Grover et al42                 | -1.359                    | -2.002         | -0.715         | 0.000   |          | Ť                           | _        |      |      | 50.97           |  |
| Total mastectomy       | Bharti et al <sup>20</sup>     | -0.978                    | -1.634         | -0.322         | 0.003   |          |                             | _        |      |      | 49.03           |  |
| Total mastectomy       |                                | -1.172                    | -1.631         | -0.713         | 0.000   |          |                             |          |      |      |                 |  |
| Overall                |                                | -0.977                    | -1.163         | -0.790         | 0.000   |          |                             | •        |      |      |                 |  |
|                        |                                |                           |                |                |         | -4.00    | -2.00                       | 0.00     | 2.00 | 4.00 |                 |  |



# Dose

| Group by dosage | Study name                        | Statistics for each study |                |                |         | Std diff in means and 95% CI |                |             |                |      | Relative |
|-----------------|-----------------------------------|---------------------------|----------------|----------------|---------|------------------------------|----------------|-------------|----------------|------|----------|
|                 |                                   | Std diff<br>in means      | Lower<br>limit | Upper<br>limit | P-value |                              |                |             |                |      | weight   |
| 1200.00         | Turan et al <sup>35</sup>         | -3.259                    | -4.105         | -2.413         | 0.000   | <del>&lt; =</del>            | <u> </u>       |             |                |      | 16.34    |
| 1200.00         | Turan et al <sup>36</sup>         | -2.663                    | -3.425         | -1.902         | 0.000   | —                            | -              |             |                |      | 20.16    |
| 1200.00         | Adam et al <sup>38</sup>          | -1.699                    | -2.422         | -0.976         | 0.000   |                              | <del></del>    |             |                |      | 22.36    |
| 1200.00         | Al-Mujadi et al <sup>39</sup>     | -1.626                    | -2.159         | -1.093         | 0.000   |                              | +=-            |             |                |      | 41.14    |
| 1200.00         | -                                 | -2.118                    | -2.460         | -1.777         | 0.000   |                              | •              |             |                |      |          |
| 300.00          | Pandey et al <sup>23</sup>        | -1.013                    | -1.570         | -0.457         | 0.000   |                              | <b>-</b>       | <b>─</b> ─  |                |      | 15.41    |
| 300.00          | Pandey et al <sup>34</sup>        | -3.312                    | -3.657         | -2.967         | 0.000   | <b>-=</b> -                  |                |             |                |      | 40.07    |
| 300.00          | Montazeri et al41                 | -0.903                    | -1.395         | -0.411         | 0.000   |                              | —              | ■—          |                |      | 19.72    |
| 300.00          | Short et al <sup>45</sup>         | -0.644                    | -1.082         | -0.205         | 0.004   |                              | -              | ╼─          |                |      | 24.80    |
| 300.00          |                                   | -1.821                    | -2.039         | -1.603         | 0.000   |                              | •              |             |                |      |          |
| 600.00          | Pandey et al <sup>40</sup>        | -3.259                    | -3.637         | -2.881         | 0.000   | -=-                          | -              |             |                |      | 23.09    |
| 600.00          | Grover et al <sup>42</sup>        | -1.359                    | -2.002         | -0.715         | 0.000   |                              | -              | -           |                |      | 7.99     |
| 600.00          | Srivastava et al43                | -1.819                    | -2.245         | -1.394         | 0.000   |                              | <del>- =</del> |             |                |      | 18.25    |
| 600.00          | Short et al <sup>45</sup>         | -0.600                    | -1.037         | -0.163         | 0.007   |                              | -              | -■          |                |      | 17.28    |
| 600.00          | Kinney et al <sup>21</sup>        | -0.059                    | -0.417         | 0.300          | 0.749   |                              |                | <b>-</b> ≢- |                |      | 25.72    |
| 600.00          | Bharti et al <sup>20</sup>        | -0.978                    | -1.634         | -0.322         | 0.003   |                              |                | <b></b>     |                |      | 7.68     |
| 600.00          |                                   | -1.387                    | -1.568         | -1.205         | 0.000   |                              | •              |             |                |      |          |
| 800.00          | Radhakrishnan et al <sup>37</sup> | 0.042                     | -0.464         | 0.549          | 0.870   |                              |                |             |                |      | 100.00   |
| 800.00          |                                   | 0.042                     | -0.464         | 0.549          | 0.870   |                              |                | <b></b>     |                |      |          |
| 900.00          | Moore et al <sup>22</sup>         | 0.383                     | -0.214         | 0.980          | 0.209   |                              |                | +=          | -              |      | 46.11    |
| 900.00          | Deniz et al44                     | -0.303                    | -0.856         | 0.249          | 0.282   |                              |                | <b>≡</b> +  |                |      | 53.89    |
| 900.00          |                                   | 0.013                     | -0.392         | 0.418          | 0.950   |                              |                | <b>*</b>    |                |      |          |
| Overall         |                                   | -1.405                    | -1.525         | -1.285         | 0.000   |                              | •              |             |                |      |          |
|                 |                                   |                           |                |                |         | -4.00                        | -2.00          | 0.00        | 2.00           | 4.00 |          |
|                 |                                   |                           |                |                |         | Favo                         | rs gabapentin  |             | Favors control |      |          |




#### **Secondary Outcomes/Side Effects:**

Significant increase in somnolence

No impact on nausea/vomiting



#### Somnolence





# **ANESTHESIOLOGY**

# Perioperative Use of Gabapentinoids for the Management of Postoperative Acute Pain

A Systematic Review and Meta-analysis

Michael Verret, M.D., M.Sc., François Lauzier, M.D., M.Sc., Ryan Zarychanski, M.D., M.Sc., Caroline Perron, M.Sc., Xavier Savard, M.D. candidate, Anne-Marie Pinard, M.D., M.Sc., Guillaume Leblanc, M.D., M.Sc., Marie-Joëlle Cossi, Ph.D., Xavier Neveu, M.Sc., Alexis F. Turgeon, M.D., M.Sc., and the Canadian Perioperative Anesthesia Clinical Trials (PACT) Group\*

ANESTHESIOLOGY 2020; 133:265-79



Verret M et al. Anesthesiology 2020;133:265-79

# "Conclusion: No clinically significant analgesic effect for the perioperative use of gabapentinoids was observed"



# **ANESTHESIOLOGY**

# Perioperative Use of Gabapentinoids for the Management of Postoperative Acute Pain

A Systematic Review and Meta-analysis

Michael Verret, M.D., M.Sc., François Lauzier, M.D., M.Sc., Ryan Zarychanski, M.D., M.Sc., Caroline Perron, M.Sc., Xavier Savard, M.D. candidate, Anne-Marie Pinard, M.D., M.Sc., Guillaume Leblanc, M.D., M.Sc., Marie-Joëlle Cossi, Ph.D., Xavier Neveu, M.Sc., Alexis F. Turgeon, M.D., M.Sc., and the Canadian Perioperative Anesthesia Clinical Trials (PACT) Group\*

ANESTHESIOLOGY 2020; 133:265-79

"Uber meta-analysis"

-6795 articles screened

- 281 RCTs selected
  - 24682 patients



Verret M et al. Anesthesiology 2020;133:265-79

#### Risk of Bias:

High: 27% of trials

Low: 11% of trials

Unclear: 62% of trials



#### <u>Gabapentin – Pregabalin:</u>

Gabapentin: 52% of trials

Pregabalin: 43% of trials

Both: 5% of trials



#### Gabapentin – Pregabalin:

Gabapentin: 52% of trials

Pregabalin: 43% of trials

Both: 5% of trials

No stratification by type of surgery



#### <u>Primary Outcome – Pain Intensity:</u>

"A slightly lower pain intensity was observed at 6, 12, 24, and 48h with gabapentinoids administration..."

Not clinically significant – below 10 points out of a 100 on VAS scale



#### Secondary Outcome – Opioids Administered:

"The amount of opioids administered at 24h was slightly lower with the use of gabapentinoids"



#### Secondary Outcome – Opioids Administered:

"The amount of opioids administered at 24h was slightly lower with the use of gabapentinoids"

MME: 25.3 mg vs 38.7mg



#### Secondary Outcome – Opioids Administered:

"The amount of opioids administered at 24h was slightly lower with the use of gabapentinoids"

MME: 25.3 mg vs 38.7mg

35% lower – "not clinically significant"



#### Preoperative "Preemptive" Meds

Summary:

Preop. Cox-2 Inhibitors

+++

Preop. Gabapentin

++

Acetaminophen PO

+

Other NSAIDS

-

Preop. Opioids

-

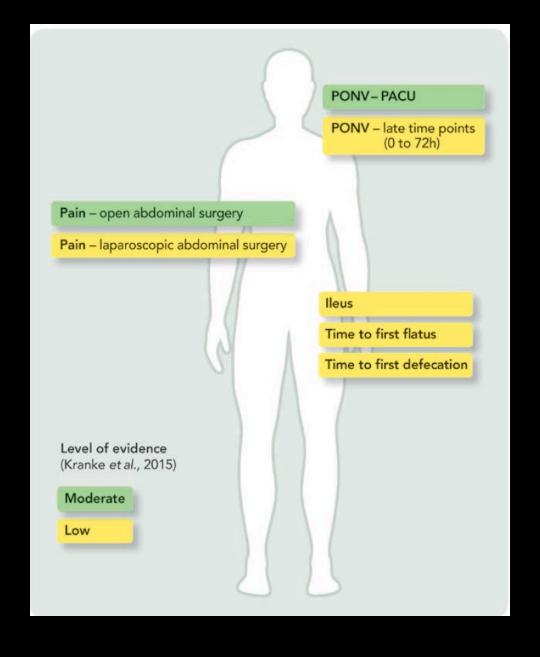


# Intra/Post-operative Therapeutics



#### CLINICAL CONCEPTS AND COMMENTARY

Jerrold H. Levy, M.D., F.A.H.A., F.C.C.M., Editor


#### Perioperative Use of Intravenous Lidocaine

Lauren K. Dunn, M.D., Ph.D., Marcel E. Durieux, M.D., Ph.D.



#### **Mechanism**:

- Effects are observed with infusion rates that mimic the plasma concentration obtained with epidural administration
- Clinical effects exceed the duration of the infusion by over 8h (5.5 times the half-life
- Likely not primarily Na channel blockade
- Attenuation of portions of the proinflammatory system (pain, ileus)
- Opioid sparing





### Type of Surgery:

**Open Abdominal** 

+ + +

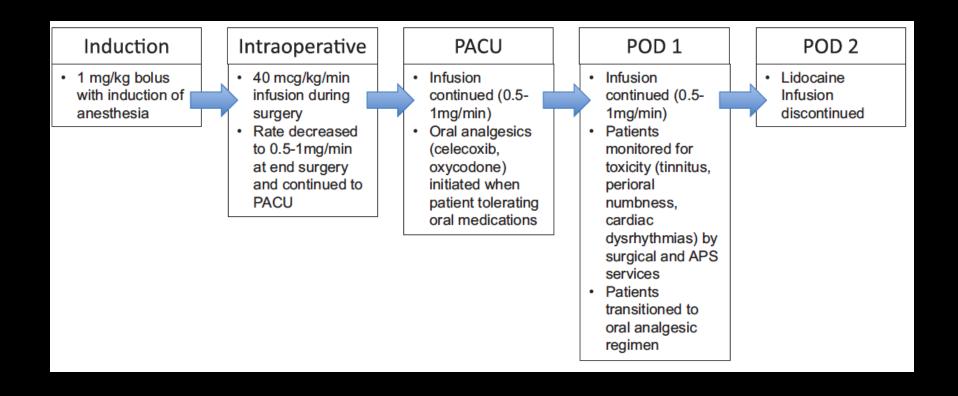
Lap. Abdominal

+++

Prostate, Breast

++

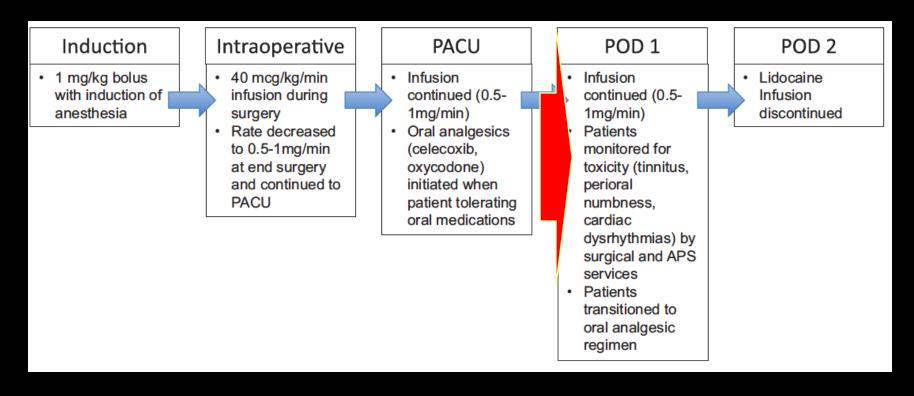
Multilevel Spine


++

Hip, Cardiac

-




#### **Typical Lidocaine Infusion Protocol**





#### Typical Lidocaine Infusion Protocol

2/3 of studies with the strongest support stopped the infusion at the end of surgery or in the PACU





#### REPORTS OF ORIGINAL INVESTIGATIONS

A systematic review of intravenous ketamine for postoperative analgesia

Revue méthodique de l'utilisation de la kétamine intraveineuse pour l'analgésie postopératoire

Kevin Laskowski, MD · Alena Stirling, MD · William P. McKay, MD · Hyun J. Lim, MD

2257 articles reviewed

70 RCTs included

4701 patients





- NMDA receptor agonist
- Duration: 15 min (rapid redistribution)



Fig. 2 Forest plot of core meta-Study name Comparison Outcome Std diff in means and 95% CI analysis (postoperative opioid consumption). Lebrun et al., 2006 Preincision Total opioid Aubrun et al, 2008 Preincision + PCA Total opioid Sahin et al., 2004 Total opioid Preincision Total opioid Engelhardt et al., 2008 Preincision + Intraco Jakschetal, 2002 Preincision + Intraop Total opioid Katz et al. 2004 Intraco Total opioid Murdoch et al. 2002 Total opioid Heinke et al., 1999 Total opioid Lebrun et al., 2006 Postco Total opioid Total opioid Reeves et al., 2001 PCA Preincision + PCA Jensen et al. 2008 Total opioid Total opioid Hercock et al. 1999 Preincision + PCA Heinke et al., 1999 Preincision + Intraco Total opioid Deng et al. 2009 (3) Preincision, Intraop + Postop Total opioid Van Estraete et al., 2004 Gamne et al. 2005 Preincision + Intraop Total opioid McKayetal, 2007 Preincision, Intraop + Postop Total opioid Dullenkopf et al, 2009 (2) Preincision Total opioid Kwoketal, 2004 Total opioid Batra et al. 2007 Total opioid Preincision + Intraco Yamauchi et al. 2008 (L2) Preincision. Intraco + Postco Total coicid Karaman et al., 2006 Total opioid Yentur et al., 2004 Dahletal, 2000 Total opioid Total opioid Karaman et al., 2006 Dullenkoof et al, 2009 (1) Preincision Total opioid Dahl et al., 2000 Preincision Total opioid Katz et al. 2004 Preincision + Intraco Total opioid Lehmann et al., 2001 Total opioid Suzuki et al. 1999(1) Total opioid Yamauchi et al., 2008 (C ) Preincision, Intraco + Postco Total opicid Remerand et al, 2009 Preincision, Intraop + Postop Total opioid Gillies et al. 2007 Total opioid Loftus et al, 2010 Total opioid Preincision + Intraco Gilabert et al. 2002 Total opioid Preincision Lahtinen et al, 2004 Preincision, Intraop + Postop Total opioid Gilabert et al., 2002 Postoo Total opioid Yamauchi et al., 2008 (L1) Preincision, Intraop + Postop Total opioid Suzuki et al., 1999 (2) Total opioid Guillou et al, 2003 Preincision, Intraop + Postop Total opioid Suzuki et al. 1999 (3) Total opioid Deng et al., 2009 (2) Preincision, Intraco + Postop Total opicid Chazan et al., 2010 PCA Total opioid Reza et al., 2010 Preincision Total opioid Kwoketal, 2004 Total opioid Snijdelaar et al., 2004 Preincision, Intraop + PCA Total opioid Deng et al, 2009 (1) Preincision, Intraop + Postop Total opioid Kapfer et al., 2005 Postoo Total opioid Menigaux et al., 2000 Preincision Total opioid Menigaux et al., 2000 Postoo Total opioid Javeryetal, 1996 Total opioid Counetal, 2001 Preincision and intraco Total opioid Adriaenssens et al., 1999 Postop Total opioid Sen et al, 2009 Preincision + Intraop Total opioid Hadi et al, 2010 Total opioid Laketai, 2010 Total opioid Postco Pirimetal, 2006 Total opioid Postop Unlugenc et al, 2002 Poston + PCA Total opioid Kafali, 2004 Preincision Total opioid Aveline et al, 2009 Preincision, Intraco + Postop Total opicid Yamauchi et al., 2008 (C2) Preincision, Intraco + Postop Total opicid Routblat et al. 1993

# **Opioid Consumption**



4.00

2.00

Favours placebo

-2.00

Favours ketamine

### Type of Surgery:

**Upper Abdominal** 

+++

Thoracic

+++

Major Orthopedic

++

Lower Abdominal

++

Head/Neck, Dental Tonsillectomy





#### **Side Effects**

| Side effect      |                  | Ketamine    | Placebo     | P (corrected) |
|------------------|------------------|-------------|-------------|---------------|
| Neuropsychiatric | Overall          | 166 (7.35)  | 87 (4.95)   | 0.018         |
|                  | When efficacious | 60 (7.69)   | 20 (3.05)   | < 0.001       |
|                  | When not         | 97 (8.24)   | 64 (7.3)    | 0.99          |
| PONV             | Overall          | 472 (25.64) | 460 (30.4)  | 0.018         |
|                  | When efficacious | 124 (16.94) | 155 (25.88) | < 0.001       |
|                  | When not         | 308 (34.34) | 245 (33.61) | 0.99          |
| Sedation         | Overall          | 17 (2.53)   | 25 (4.42)   | 0.99          |
|                  | When efficacious | 3 (1.23)    | 9 (4.15)    | 0.981         |
|                  | When not         | 14 (5.12)   | 12 (5.8)    | 0.99          |



#### **Small Dose Ketamine – Typical Regiment:**

Bolus after induction: 0.25 mg/kg

Cont. infusion: 0.25 mg/kg/h

Continue in PACU/ICU

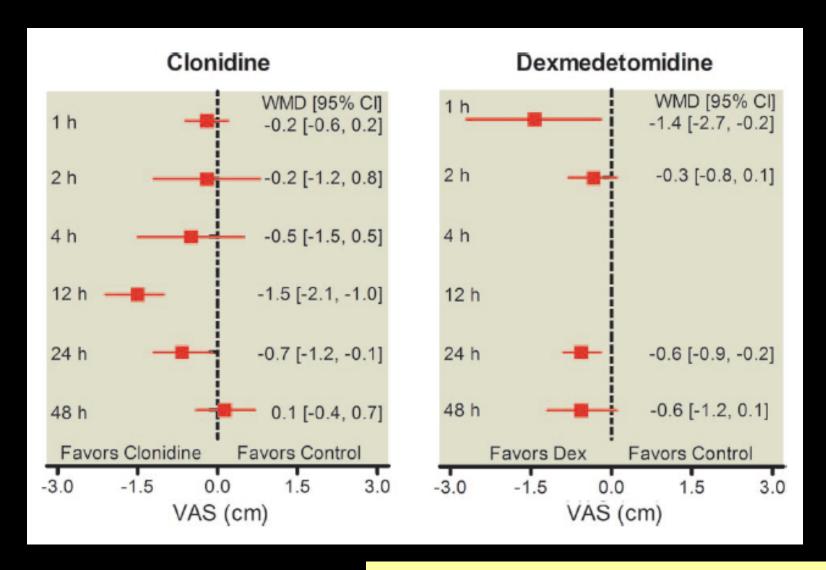
Wean over 48h



# Effect of Perioperative Systemic $\alpha$ 2 Agonists on Postoperative Morphine Consumption and Pain Intensity

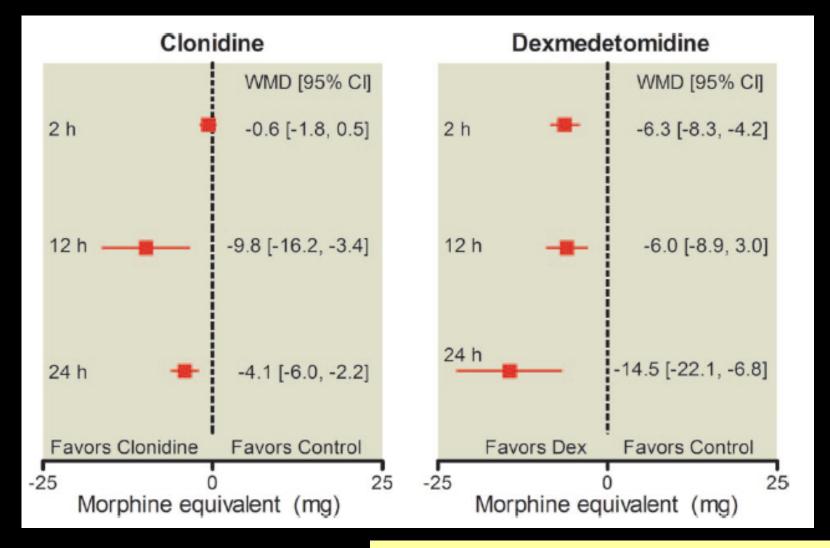
Systematic Review and Meta-analysis of Randomized Controlled Trials

Grégoire Blaudszun, M.D.,\* Christopher Lysakowski, M.D.,† Nadia Elia, M.D., M.Sc.,‡ Martin R. Tramèr, M.D., D.Phil.§


159 article reviewed

30 RCTs included

1792 patients




#### **Pain Scores**





#### **Morphine Sparing**





# Hemodynamic Side Effects

|                                                        | Number<br>of | Number of Patients<br>with Event/Total<br>er Number of Patients (%) |               | Risk Ratio        | Number Needed to<br>Treat (NNT) Number<br>Needed to Harm |                           |
|--------------------------------------------------------|--------------|---------------------------------------------------------------------|---------------|-------------------|----------------------------------------------------------|---------------------------|
|                                                        | Trials       | Active                                                              | Control       | [95% CI]          | (NNH) [95% CI]                                           | References                |
| Intraoperative events<br>Bradycardia                   |              |                                                                     |               |                   |                                                          |                           |
| Clonidine                                              | 6            | 16/214 (7.5)                                                        | 8/228 (3.5)   | 1.95 [0.95, 3.98] | _                                                        | 18, 20, 28, 29,<br>32, 38 |
| Dexmedetomidine<br>Hypotension                         | 1            | n/a                                                                 | n/a           | n/a               | n/a                                                      | 42                        |
| Clonidine                                              | 6            | 31/229 (13.5)                                                       | 6/243 (2.5)   | 4.75 [2.17, 10.4] | NNH 9.0 [6.3, 16]                                        | 18, 20, 28, 29,<br>38, 41 |
| Dexmedetomidine<br>Hypertension                        | 1            | n/a                                                                 | n/a           | n/a               | n/a                                                      | 39                        |
| Clonidine                                              | 4            | 15/103 (14.6)                                                       | 62/122 (50.8) | 0.46 [0.16, 1.29] | _                                                        | 18, 28, 29, 38            |
| Dexmedetomidine<br>Postoperative events<br>Bradycardia | 2            | 9/85 (10.6)                                                         | 24/45 (53.3)  | 0.26 [0.13, 0.52] | NNT 2.3 [1.7, 3.7]                                       | 39, 42                    |
| Clonidine                                              | 4            | 4/160 (2.5)                                                         | 3/155 (1.9)   | 1.33 [0.36, 4.90] | _                                                        | 20, 26, 29, 37            |
| Dexmedetomidine<br>Hypotension                         | 2            | 16/50 (32.0)                                                        | 0/50 (0.0)    | 17.0 [2.35, 123]  | NNH 3.1 [2.2, 5.2]                                       | 25, 42                    |
| Clonidine                                              | 5            | 15/230 (6.5)                                                        | 3/185 (1.6)   | 3.37 [1.27, 8.92] | NNH 20 [12, 82]                                          | 20, 26, 29,<br>37, 41     |
| Dexmedetomidine<br>Hypertension                        | 1            | n/a                                                                 | n/a           | n/a               | n/a                                                      | 42                        |
| Clonidine                                              | 2            | 0/111 (0.0)                                                         | 8/106 (7.5)   | 0.06 [0.00, 0.94] | NNT 13 [8.0, 40]                                         | 20, 32                    |
| Dexmedetomidine                                        | 0            | n/a                                                                 | n/a           | n/a               | n/a                                                      |                           |



# Hemodynamic Side Effects

|                                                        | Number<br>of | Number of Patients (%) |               | Risk Ratio        | Number Needed to<br>Treat (NNT) Number<br>Needed to Harm |                           |
|--------------------------------------------------------|--------------|------------------------|---------------|-------------------|----------------------------------------------------------|---------------------------|
|                                                        | Trials       | Active                 | Control       | [95% CI]          | (NNH) [95% CI]                                           | References                |
| Intraoperative events<br>Bradycardia                   |              |                        |               |                   |                                                          |                           |
| Clonidine                                              | 6            | 16/214 (7.5)           | 8/228 (3.5)   | 1.95 [0.95, 3.98] | _                                                        | 18, 20, 28, 29,<br>32, 38 |
| Dexmedetomidine<br>Hypotension                         | 1            | n/a                    | n/a           | n/a               | n/a                                                      | 42                        |
| Clonidine                                              | 6            | 31/229 (13.5)          | 6/243 (2.5)   | 4.75 [2.17, 10.4] | NNH 9.0 [6.3, 16]                                        | 18, 20, 28, 29,<br>38, 41 |
| Dexmedetomidine<br>Hypertension                        | 1            | n/a                    | n/a           | n/a               | n/a                                                      | 39                        |
| Clonidine                                              | 4            | 15/103 (14.6)          | 62/122 (50.8) | 0.46 [0.16, 1.29] | _                                                        | 18, 28, 29, 38            |
| Dexmedetomidine<br>Postoperative events<br>Bradycardia | 2            | 9/85 (10.6)            | 24/45 (53.3)  | 0.26 [0.13, 0.52] | NNT 2.3 [1.7, 3.7]                                       | 39, 42                    |
| Clonidine                                              | 4            | 4/160 (2.5)            | 3/155 (1.9)   | 1.33 [0.36, 4.90] |                                                          | 20, 26, 29, 37            |
| Dexmedetomidine<br>Hypotension                         | 2            | 16/50 (32.0)           | 0/50 (0.0)    | 17.0 [2.35, 123]  | NNH 3.1 [2.2, 5.2]                                       | 25, 42                    |
| Clonidine                                              | 5            | 15/230 (6.5)           | 3/185 (1.6)   | 3.37 [1.27, 8.92] | NNH 20 [12, 82]                                          | 20, 26, 29,<br>37, 41     |
| Dexmedetomidine<br>Hypertension                        | 1            | n/a                    | n/a           | n/a               | n/a                                                      | 42                        |
| Clonidine                                              | 2            | 0/111 (0.0)            | 8/106 (7.5)   | 0.06 [0.00, 0.94] | NNT 13 [8.0, 40]                                         | 20, 32                    |
| Dexmedetomidine                                        | 0            | n/a                    | n/a           | n/a               | n/a                                                      |                           |





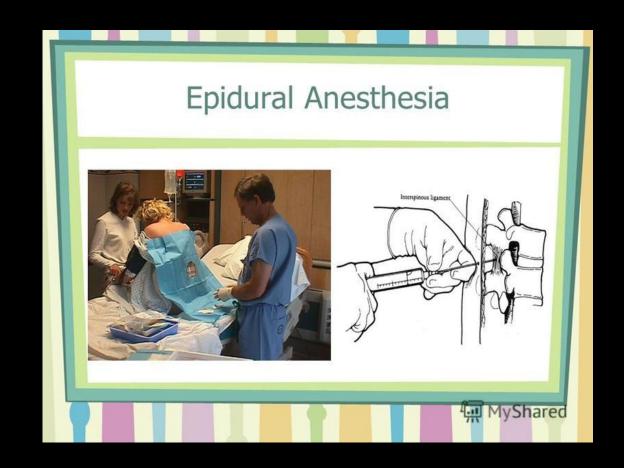
# **Local Anesthetics**



#### **Local Anesthetics:**

Neuraxial Techniques

Peripheral Nerve Blocks


Infiltration Techniques



# **Continuous Epidural:**

"Gold standard" for thoracotomy

Open laparotomy?





#### **Continuous Epidural:**

#### Disadvantages:

Technical challenging (THORACIC)

High failure rate

Labor intensive

•Hemodynamic changes (goal directed fluid therapy)



# **Continuous Peripheral Nerve Block:**

"Gold standard" for major orthopedics

"Gold standard" for amputations





#### **Continuous Peripheral Nerve Block:**

#### Advantages:

- Tailored to 1 extremity
  - High success rate
- No hemodynamic changes
- Home discharge possible



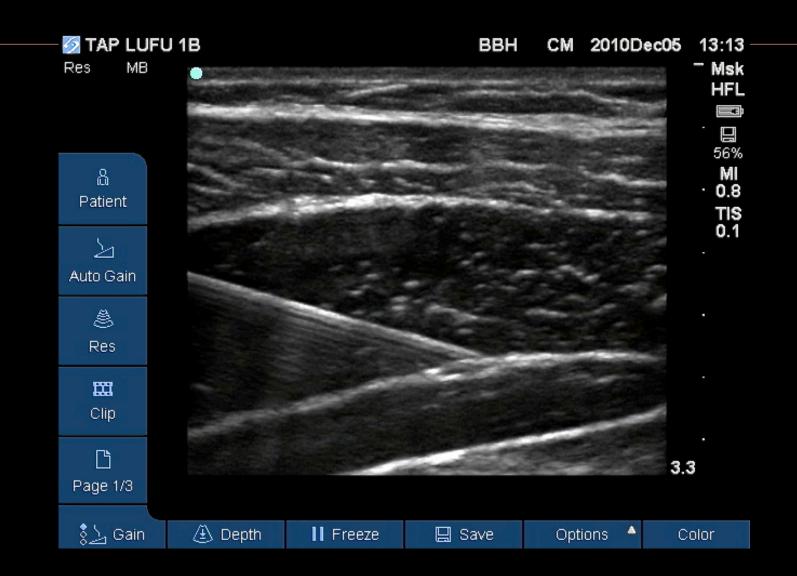
## Continuous Peripheral Nerve Block:

#### **Disadvantages:**

- Requires experience with technique
- Until recently limited to extremity surgeries

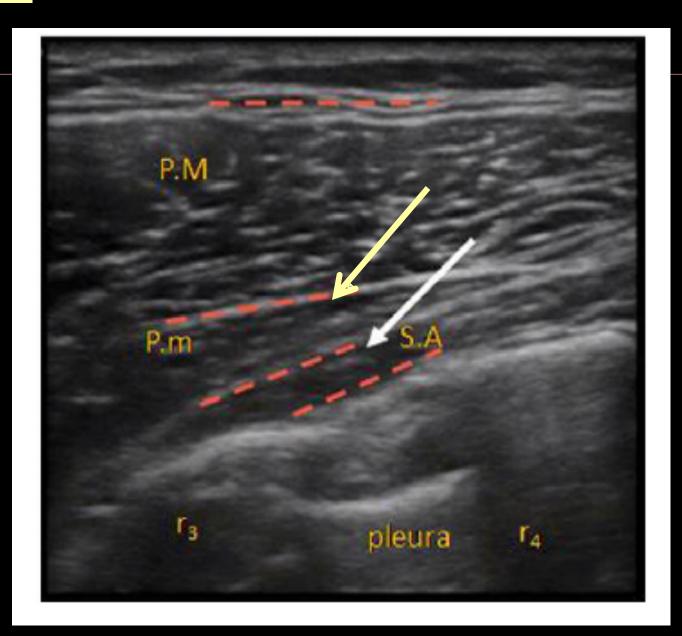


## New Nerve Block Techniques:


#### **Abdominal Wall and Chest Wall:**

Transverse abdominus plane (TAP) block

■Pectoralis (PEC) blocks




## TAP BLOCK





# PEC BLOCK





#### **ANESTHESIOLOGY**

# Perioperative Management of Patients Infected with the Novel Coronavirus

Recommendation from the Joint Task Force of the Chinese Society of Anesthesiology and the Chinese Association of Anesthesiologists

Xiangdong Chen, M.D., Ph.D., Yanhong Liu, M.D., Ph.D., Yahong Gong, M.D., Xiangyang Guo, M.D., Ph.D., Mingzhang Zuo, M.D., Ph.D., Jun Li, M.D., Ph.D., Wenzhu Shi, M.D., Ph.D., Hao Li, M.D., Ph.D., Xiaohan Xu, M.D., Weidong Mi, M.D., Ph.D., Yuguang Huang, M.D., Ph.D., Chinese Society of Anesthesiology, Chinese Association of Anesthesiologists

ANESTHESIOLOGY 2020; XXX:00-00



Chen X et al. Anesthesiology 2020;132(6):1307-1316



Psychologic Preparation and Self Encouragement



"General anesthesia is recommended for patients with suspected or confirmed COVID-19 to reduce the risk of patients coughing and bucking, which can generate airborne materials and droplets"



"Spinal anesthesia is still recommended as the primary choice for anesthesia for cesarean delivery in a mother with COVID-19"



Daring discourse: are we ready to recommend neuraxial anesthesia and peripheral nerve blocks during the COVID-19 pandemic? A pro-con

Michael N Singleton, Ellen M Soffin



#### **PRO-Regional**

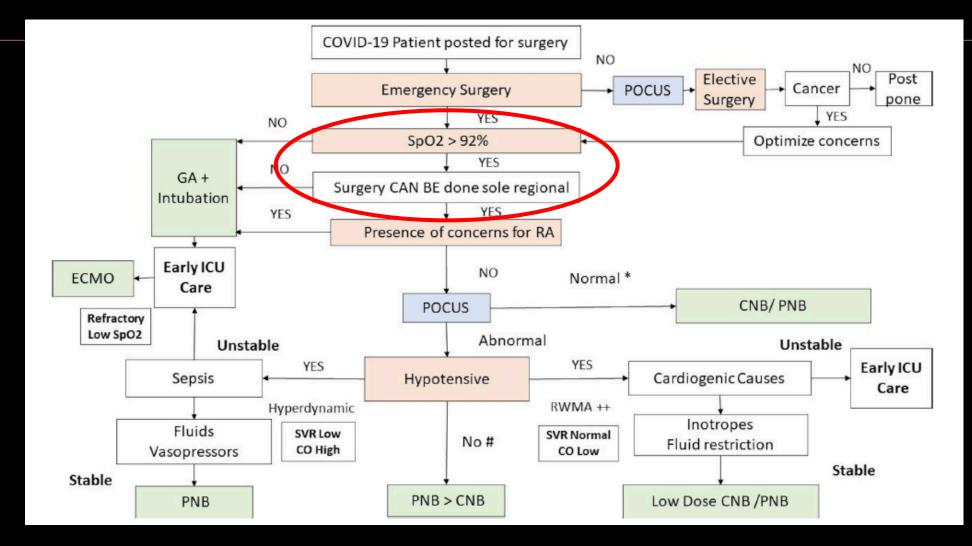
**CON-Regional** 

- Avoidance of Intubation (aerosol)
- ■Benefits of regional anesthesia (L&D, hip)
- Potentially resource preserving

- Coagulopathy
- •Higher failure rate (due to PPE)?
- Conversion to GA
- Respiratory compromise (phrenic nerve)
- Other aerosol generating events (cough)?



### General or Regional Anesthesia in COVID-19 Patients?


#### **Education**

Reconfiguring the scope and practice of regional anesthesia in a pandemic: the COVID-19 perspective

Balakrishnan Ashokka , <sup>1,2</sup> Arunangshu Chakraborty , <sup>3</sup> Balavenkat J Subramanian, <sup>4</sup> Manoj Kumar Karmakar , <sup>5</sup> Vincent Chan<sup>6</sup>



#### General or Regional Anesthesia in COVID-19 Patients?





- There are no data suggesting that one technique is superior to the other in the COVID-19 population
- Decision regarding anesthetic technique should be case by case and take into consideration:
- Current disease state (respiratory, coagulation, hemodynamics, organ failure)
  - "Sedation obstacles" (e.g., OSA)
  - Type and duration of planned surgery
  - Respiratory or hemodynamic impact of regional technique



## **Adjuvant Therapy**

- Music Therapy
  - Acupuncture



## **Adjuvant Therapy**

- Music Therapy
  - Acupuncture

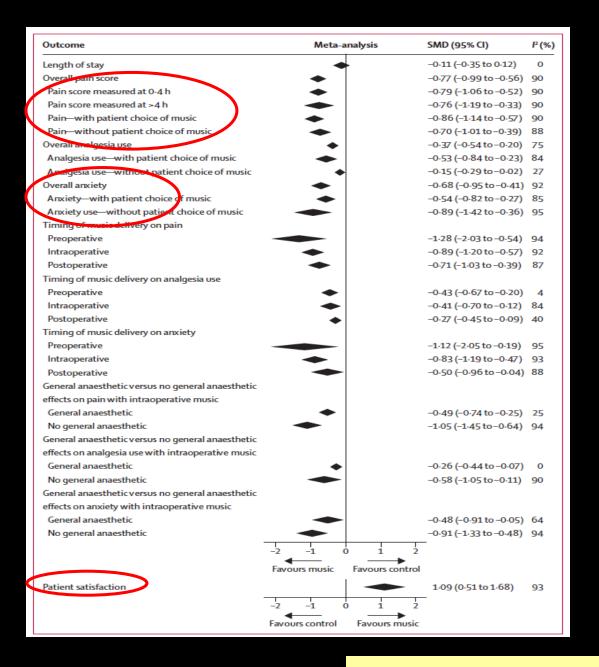
Mixed evidence

No harm!



# Music as an aid for postoperative recovery in adults: a systematic review and meta-analysis



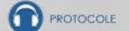

Jenny Hole, Martin Hirsch, Elizabeth Ball, Catherine Meads

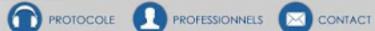
#### Summary

**Background** Music is a non-invasive, safe, and inexpensive intervention that can be delivered easily and successfully. We did a systematic review and meta-analysis to assess whether music improves recovery after surgical procedures.

Lancet 2015; 386: 1659-71
Published Online
August 13, 2015






# **Music Therapy**





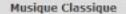













0

0



#### Choisissez dès maintenant votre séance





Autour de la Harpe





Musique d'Ailleurs



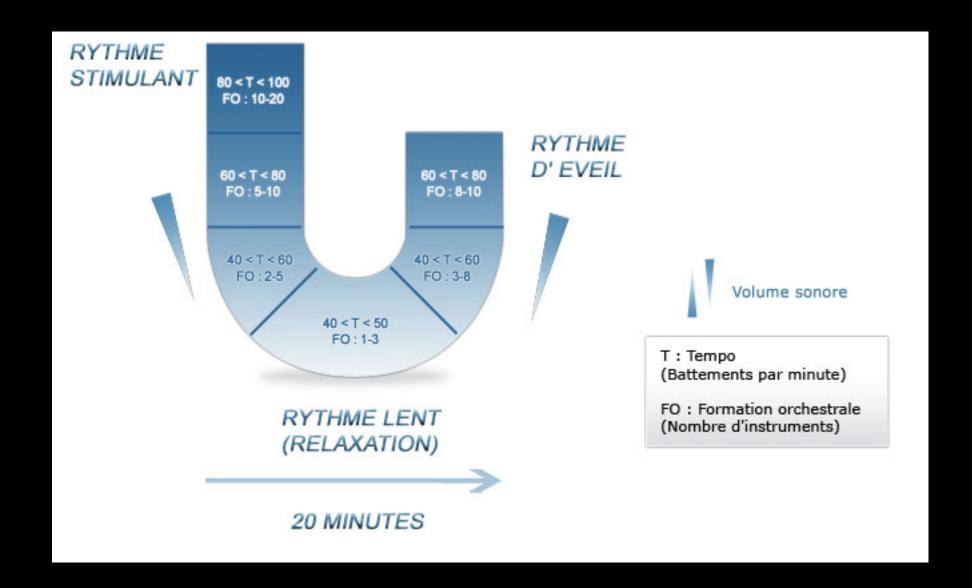







Musique d'Aujourd'hui


















#### REVIEW ARTICLE

Acupuncture for Acute Postoperative Pain after Back Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials

1515 Publications

5 RCTs selected (3 from same author)

480 patients

Young-Hun Cho, MS et al. Pain Practice 2014;201:279-91

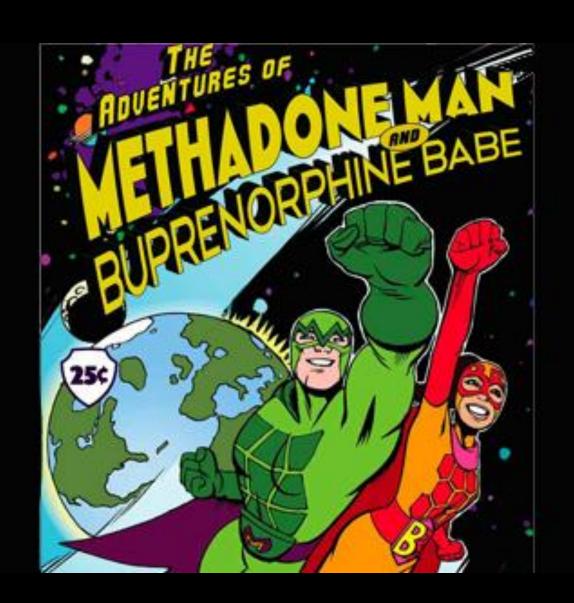


### **Pain Scores**

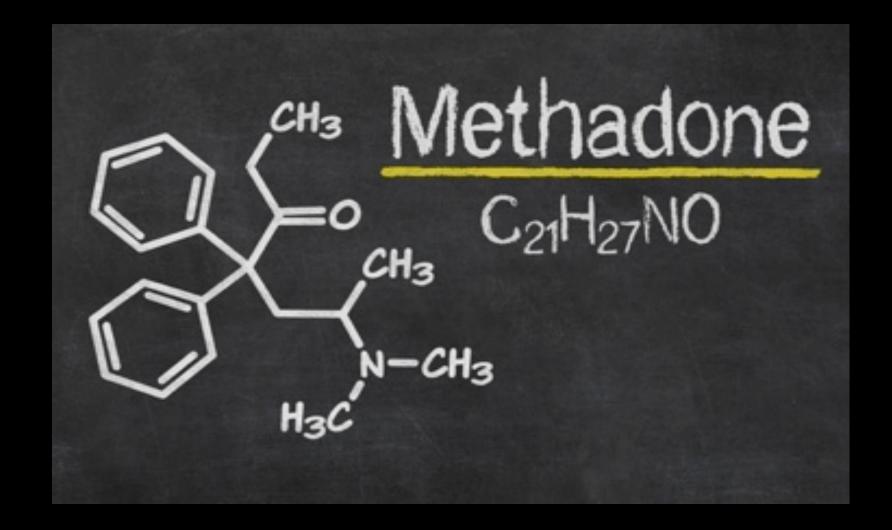
|                                     |          | ΑT      |          | Sham / No     | o treatr              | nent   |        | Std. Mean Difference | Std. Mean Difference                     |
|-------------------------------------|----------|---------|----------|---------------|-----------------------|--------|--------|----------------------|------------------------------------------|
| Study or Subgroup                   | Mean     | SD      | Total    | Mean          | SD                    | Total  | Weight | IV. Random, 95% CI   | IV, Random, 95% CI                       |
| 1.1.1 AT vs. Sham AT                | 1        |         |          |               |                       |        |        |                      |                                          |
| Yeh 2010a                           | 2.1      | 1.2     | 33       | 3             | 1.4                   | 30     | 51.1%  | -0.68 [-1.19, -0.17] | <del></del>                              |
| Yeh 2011                            | 2.1      | 1.3     | 30       | 3             | 1.4                   | 30     | 48.9%  | -0.66 [-1.18, -0.14] | <del>-</del>                             |
| Subtotal (95% CI)                   |          |         | 63       |               |                       | 60     | 100.0% | -0.67 [-1.04, -0.31] | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 6 | 0.00; Cł | nj2 = ( | 0.01, df | = 1 (P = 0.9  | (4);  2 =             | 0%     |        |                      |                                          |
| Test for overall effect: 2          | Z = 3.61 | (P =    | 0.0003   | )             |                       |        |        |                      |                                          |
| 1.1.2 AT vs. No treatm              | nent     |         |          |               |                       |        |        |                      |                                          |
| Yeh 2010a                           | 2.1      | 1.2     | 33       | 3.1           | 1.5                   | 31     | 51.3%  | -0.73 [-1.24, -0.22] | <del></del>                              |
| Yeh 2011                            | 2.1      | 1.3     | 30       | 3             | 1.4                   | 30     | 48.7%  | -0.66 [-1.18, -0.14] | <del>-</del>                             |
| Subtotal (95% CI)                   |          |         | 63       |               |                       | 61     | 100.0% | -0.69 [-1.06, -0.33] | <b>◆</b>                                 |
| Heterogeneity: Tau <sup>2</sup> = 0 | 0.00; Cł | ni² = ( | 0.04, df | = 1 (P = 0.8  | 35); l <sup>2</sup> = | 0%     |        |                      |                                          |
| Test for overall effect: 2          | Z = 3.75 | (P =    | 0.0002   | )             |                       |        |        |                      |                                          |
|                                     |          | -       |          | -             |                       |        |        |                      |                                          |
|                                     |          |         |          |               |                       |        |        | <del>+</del><br>-2   | <del></del>                              |
|                                     |          |         |          |               |                       |        |        | -2                   | -1 0 1 2<br>Favours AT Favours Sham / No |
| Test for subgroup differ            | rences:  | Chi²:   | = 0.01,  | df = 1 (P = 0 | 0.93), l <sup>a</sup> | 2 = 0% |        |                      | ravours AT ravours Snam / No             |

Young-Hun Cho, MS et al. Pain Practice 2014;201:279-91




## **Opioid Sparing**

|                                     |          | ΑT                  |          | Sham AT /     | No treatm                 | ant    | ,        | Std. Mean Difference | Std. Mean Difference         |
|-------------------------------------|----------|---------------------|----------|---------------|---------------------------|--------|----------|----------------------|------------------------------|
| Study or Subgroup                   | Mean     |                     | Total    | Mean          | SD                        |        | Weight   | IV, Random, 95% CI   | IV, Random, 95% CI           |
|                                     |          | 30                  | I Utai   | Weali         | 30                        | I Otal | AAGIĞIIC | IV, Kandoni, 33/6 Ci | IV, Kalidolli, 35/8 Cl       |
| 2.1.1 AT vs. Sham AT                |          |                     |          |               |                           |        |          |                      |                              |
| Yeh 2010a                           | 18.6     |                     | 33       | 21.6          | 13.1                      | 30     |          | -0.26 [-0.76, 0.24]  |                              |
| Yeh 2011                            | 19.3     | 9.7                 | 30       | 21.6          | 13.1                      | 30     | 48.9%    | -0.20 [-0.70, 0.31]  |                              |
| Subtotal (95% CI)                   |          |                     | 63       |               |                           | 60     | 100.0%   | -0.23 [-0.58, 0.13]  | <b>→</b>                     |
| Heterogeneity: Tau <sup>2</sup> = 0 | 0.00; Ch | ni² = (             | 0.03, df | = 1 (P = 0.86 | 6); I <sup>2</sup> = 0%   |        |          |                      |                              |
| Test for overall effect: 2          | Z = 1.26 | (P =                | 0.21)    | ,             | -                         |        |          |                      |                              |
|                                     |          |                     |          |               |                           |        |          |                      |                              |
| 2.1.2 AT vs. No treatm              | ent      |                     |          |               |                           |        |          |                      |                              |
| Yeh 2010a                           | 18.6     | 9.7                 | 33       | 27.2          | 12.5                      | 31     | 51.7%    | -0.76 [-1.27, -0.25] |                              |
| Yeh 2011                            | 19.3     | 9.7                 | 30       | 28            | 12.1                      | 30     | 48.3%    | -0.78 [-1.31, -0.26] | <del></del>                  |
| Subtotal (95% CI)                   |          |                     | 63       |               |                           | 61     | 100.0%   | -0.77 [-1.14, -0.41] | •                            |
| Heterogeneity: Tau <sup>2</sup> = 0 | 0.00; Ch | nj <sup>2</sup> = ( | 0.00, df | = 1 (P = 0.96 | 6);  2 = 0%               |        |          |                      |                              |
| Test for overall effect: 2          |          |                     |          |               | ,-                        |        |          |                      |                              |
|                                     |          | 1.                  |          | ,             |                           |        |          |                      |                              |
|                                     |          |                     |          |               |                           |        |          | +                    | <del>- + + + + +</del>       |
|                                     |          |                     |          |               |                           |        |          | -2                   | 2 -1 0 1 2                   |
| Test for subgroup differ            | rences:  | Chi²:               | = 4.37,  | df = 1 (P = 0 | .04), I <sup>2</sup> = 77 | 7.1%   |          |                      | Favours AT Favours Sham / No |


Young-Hun Cho, MS et al. Pain Practice 2014;201:279-91



### Is there a "GOOD" Opioid?







- Developed in Germany between 1937-1939
- Synthetic opioid
- Targets the NMDA receptor in addition to the μ-receptor
- Long half-life 15-60h, mean 22h (CYP3A4, CYP2B6, CYP2D6)



#### Intraoperative Methadone for the Prevention of Postoperative Pain

A Randomized, Double-blinded Clinical Trial in Cardiac Surgical Patients

Glenn S. Murphy, M.D., Joseph W. Szokol, M.D., Michael J. Avram, Ph.D., Steven B. Greenberg, M.D., Jesse H. Marymont, M.D., Torin Shear, M.D., Kruti N. Parikh, B.S., Shivani S. Patel, B.A., Dhanesh K. Gupta, M.D.

N = 156, scheduled for cardiac surgery

Randomized to either receive 0.3mg/kg methadone or fentanyl 12 mcg/kg

Half of dose at induction, other half infused over next 2h



|                                                    | Methadone Group    | Fentanyl Group    | Difference (99% CI)    | P Value |
|----------------------------------------------------|--------------------|-------------------|------------------------|---------|
| Time of first morphine rescue (h)<br>Morphine (mg) | 6.5 (3.25 to 9.25) | 3.75 1.5 to 5.75) | 2.25 (1 to 4)          | <0.001  |
| First 24 h                                         | 6 (4 to 12)        | 10 (6 to 22)      | −4 (−8 to −2)          | < 0.001 |
| Second 24 h                                        | 0 (0 to 2)         | 1 (0 to 6)        | 0 (–2 to 0)            | 0.036   |
| Third 24 h                                         | 0 (0 to 0)         | 0 (0 to 0)        | 0 (0 to 0)             | 0.403   |
| Total                                              | 8 (4 to 14)        | 14 (8 to 28)      | -6 (-10 to -2)         | < 0.001 |
| Morphine dose ≥20 mg first 24 h                    | 2 (2.6%)           | 23 (29.1%)        | -26.5 (-41.4 to -12.9) | < 0.001 |
| Oral pain tablets                                  |                    | , ,               | ,                      |         |
| First 24 h                                         | 2 (0 to 4)         | 2 (0 to 4)        | 0 (0 to 0)             | 0.859   |
| Second 24 h                                        | 4 (2 to 8)         | 4 (2 to 6)        | 0 (-2 to 2)            | 0.607   |
| Third 24 h                                         | 2 (0 to 6)         | 4 (0 to 8)        | 0 (-2 to 0)            | 0.130   |
| Total                                              | 10 (4 to 16)       | 12 (6 to 16)      | 0 (–4 to 2)            | 0.443   |



|                                   | Methadone Group    | Fentanyl Group     | Difference (99% CI)    | P Value |
|-----------------------------------|--------------------|--------------------|------------------------|---------|
| Time of first morphine rescue (h) | 6.5 (3.25 to 9.25) | 3.75 (1.5 to 5.75) | 2.25 (1 to 4)          | <0.001  |
| Morphine (mg)                     |                    |                    |                        |         |
| First 24 h                        | 6 (4 to 12)        | 10 (6 to 22)       | −4 (−8 to −2)          | < 0.001 |
| Second 24 h                       | 0 (0 to 2)         | 1 (0 to 6)         | 0 (-2 to 0)            | 0.036   |
| Third 24 h                        | 0 (0 to 0)         | 0 (0 to 0)         | 0 (0 to 0)             | 0.403   |
| Total                             | 8 (4 to 14)        | 14 (8 to 28)       | −6 (−10 to −2)         | < 0.001 |
| Morphine dose ≥20 mg first 24 h   | 2 (2.6%)           | 23 (29.) %)        | -26.5 (-41.4 to -12.9) | < 0.001 |
| Oral pain tablets                 |                    |                    |                        |         |
| First 24 h                        | 2 (0 to 4)         | 2 (0 to 4)         | 0 (0 to 0)             | 0.859   |
| Second 24 h                       | 4 (2 to 8)         | 4 (2 to 6)         | 0 (-2 to 2)            | 0.607   |
| Third 24 h                        | 2 (0 to 6)         | 4 (0 to 8)         | 0 (–2 to 0)            | 0.130   |
| Total                             | 10 (4 to 16)       | 12 (6 to 16)       | 0 (–4 to 2)            | 0.443   |

Murphy GS et al. Anesthesiology 2015;122:1112-22



|                                           | Methadone Group | Fentanyl Group    | Difference (99% CI) | <i>P</i> Value |
|-------------------------------------------|-----------------|-------------------|---------------------|----------------|
| Level of pain at rest                     |                 |                   |                     |                |
| 15 min                                    | 3 (1 to 5)      | 5 (2 to 8)        | −2 (−4 to −1)       | < 0.001        |
| 2 h                                       | 3 (1 to 5)      | 4.5 (2 to 7)*     | -1 (-3 to 0)        | 0.002          |
| 4 h                                       | 2 (1 to 4)      | 3 (1 to 6)*       | -1 (-2 to 0)        | 0.012          |
| 8 h                                       | 2 (0 to 4)      | 4 (2 to 6)*       | -2 (-3 to 0)        | < 0.001        |
| 12 h                                      | 2 (0 to 4)†     | 4 (2 to 5)        | -1 (-2 to 0)        | < 0.001        |
| 24 h                                      | 2 (1 to 4)†     | 4 (2 to 7)*       | -2 (-3 to 0)        | < 0.001        |
| 48 h                                      | 2 (0 to 3)‡     | 3 (1 to 5)§       | -1 (-2 to 0)        | 0.002          |
| 72 h                                      | 2 (0 to 3)†     | 3 (0 to 5)§       | -1 (-2 to 0)        | 0.002          |
| Level of pain with coughing               | , , , , ,       |                   |                     |                |
| 15 min                                    | 5 (3 to 6)      | 7 (4 to 10)       | −2 (−4 to −1)       | < 0.001        |
| 2 h                                       | 4 (3 to 6)      | 7 (4 to 8.5)*     | −2 (−3 to −1)       | < 0.001        |
| 4 h                                       | 4 (3 to 6)      | 6 (4 to 8)*       | -2 (-3 to -1)       | < 0.001        |
| 8 h                                       | 4 (2 to 5)      | 7 (5 to 8)*       | −3 (−4 to −2)       | < 0.001        |
| 12 h                                      | 4 (3 to 5)†     | 6 (4 to 8)        | -2 (-3 to -1)       | < 0.001        |
| 24 h                                      | 5 (3 to 6)†     | 7 (5 to 9)*       | -2 (-3 to -1)       | < 0.001        |
| 48 h                                      | 4 (2 to 6)‡     | 6 (4 to 8)§       | -2 (-3 to -1)       | < 0.001        |
| 72 h                                      | 4 (2 to 5)†     | 5 (3 to 7)§       | -2 (-3 to 0)        | < 0.001        |
| Overall satisfaction with pain management | , , , ,         | , ,,,             | , ,                 |                |
| 15 min                                    | 90 (75 to 95)   | 70 (40 to 90)     | 17 (5 to 30)        | < 0.001        |
| 2 h                                       | 90 (75 to 97)   | 75 (50 to 90)     | 10 (0 to 20)        | < 0.001        |
| 4 h                                       | 90 (80 to 98)   | 80 (60 to 90)     | 10 (0 to 20)        | 0.003          |
| 8 h                                       | 90 (80 to 100)  | 80 (60 to 95)     | 10 (0 to 20)        | 0.002          |
| 12 h                                      | 90 (80 to 100)† | 85 (70 to 95)     | 5 (0 to 10)         | 0.025          |
| 24 h                                      | 95 (90 to 100)‡ | 90 (77.5 to 100)* | 5 (0 to 10)         | 0.006          |
| 48 h                                      | 95 (90 to 100)  | 90 (75 to 100)§   | 5 (0 to 10)         | <0.001         |
| 72 h                                      | 100 (90 to 100) | 90 (80 to 100)§   | 5 (0 to 10)         | <0.001         |

Murphy GS et al. Anesthesiology 2015;122:1112-22



## Methadone – Risks:

Cardiac arrhythmias – QT prolongation

22600649

2011: 26% of all opioid related deaths in the US



# Perioperative Management of Opioid Use Disorder Medications



#### Guidelines



Buprenorphine Formulations: Clinical Best Practice Strategies Recommendations for Perioperative Management of Patients Undergoing Surgical or Interventional Pain Procedures

Adrian B. Jonan, MD<sup>1</sup>, Alan D. Kaye, MD, PhD<sup>2</sup>, and Richard D. Urman, MD<sup>1,2</sup>

Jonan AB et al. Pain Physician 2018;21:E1-E12



| Formulation                                      | Brand Name | Dosage                                                                                                                             | Time to Peak Plasma<br>Concentration (hrs) | Mean Half Life (hrs)                            |  |
|--------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|--|
| Buccal Film                                      | Belbuca    | 75, 150, 300, 450, 600, 750,<br>900 mcg                                                                                            | 2.5–3                                      | 16.4–38.8                                       |  |
| Sublingual Tablet                                | Subutex    | 2, 8 mg 1.3–1.8                                                                                                                    |                                            | 31-35                                           |  |
| Intravenous                                      | Buprenex   | 0.3 mg 5–15 mins                                                                                                                   |                                            | 1.2-7.2                                         |  |
| Transdermal System                               | Butrans    | 5, 7.5, 10, 15, 20 mcg/hr                                                                                                          | 72 hrs                                     | 26                                              |  |
| Buccal Film (Buprenorphine and naloxone)         | Bunavail   | 2.1 mg/0.3 mg<br>4.2 mg/0.7 mg<br>6.3 mg/1 mg<br>(buprenorphine/naloxone)                                                          | Not reported                               | 16.4–27.5 (buprenorphine)<br>1.9–2.4 (naloxone) |  |
| Sublingual Tablet (Buprenorphine and naloxone)   | Zubsolv    | 0.7 mg/0.18 mg<br>1.4 mg/0.36 mg<br>2.9 mg/0.71 mg<br>5.7 mg/1.4 mg<br>8.6 mg/2.1 mg<br>11.4 mg/2.9 mg<br>(buprenorphine/naloxone) | Not reported                               | 24–42 (buprenorphine<br>2–12 (naloxone)         |  |
| Sublingual Film<br>(Buprenorphine with naloxone) | Suboxone   | 2 mg/0.5 mg<br>4 mg/1 mg<br>8 mg/2 mg<br>12 mg/3 mg<br>(buprenorphine/naloxone)                                                    | 0.5–1                                      | 24–42 (buprenorphine)<br>2–12 (naloxone)        |  |

Jonan AB et al. Pain Physician 2018;21:E1-E12





- Patients presenting for elective highly invasive surgery for which regional techniques can NOT be utilized (e.g., complex spinal fusion) AND being treated with HIGH dose buprenorphine/naloxone (8/2 and 12/3) should be postponed and referred to a pain clinic for suboxone weaning.
- Patients presenting for elective minimal/moderate invasive surgery for which multimodal analgesia (including regional techniques) can be utilized (e.g., TKA) AND being treated with small to moderate doses of buprenorphine/naloxone (2/0.5 and 4/1) are ok to proceed.



### **Setting Expectations:**

Starts with preoperative visit

Involve pain service early

Continue home meds/ add IR meds

Periop. period NOT the right time to wean chronic meds



