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Abstract 
 

Numerous breakthroughs in cancer have been achieved and it is now widely recognized as a genetic disease. Still 

many of the molecular mechanisms are unknown, creating a gap to achieve the cure. Omics datasets are being 

generated at an accelerated rate and becoming more reliable with biotechnology advances, offering an enormous 

amount of data to study many unknowns in cancer biology and clinical informatics. These datasets are highly 

heterogeneous and suitable data mining techniques are needed to uncover the molecular drivers of cancer. Henceforth, 

we developed a feature-selection model that effectively analyzes large amounts of data from The Cancer Genome 

Atlas and extracts connections and patterns to molecularly understand different cancer subtypes. Our proposed scoring 

method gave a maximum accuracy of 91.83% to distinguish nineteen cancer types evaluated using a random forest 

classification model. Whereas existing methods based on statistical metrics - mean absolute deviation, standard 

deviation, and interquartile range- showed maximum performance of 88.33%, 79.11%, and 64.77%, respectively. This 

result is encouraging since there are not many methods available to automatize the process of selecting important 

variables when scores are given to each. PR, ERAlpha, GATA3, FASN, among other proteins were selected as 

important to correctly classify cancer types. 
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1. Introduction 
Understanding diseases such as cancer is of great importance to our communities. In fact, in the US alone about 38.4% 

of its population will be diagnosed with these deadly diseases based on data statistics from the National Cancer 

Institute in the years of 2013-2015 [1]. Nonetheless, biotechnology advances have enabled the collection of massive 

amounts of molecular information to better understand the biological mechanisms of cancer initiation and 

development. Though many discoveries are a result of this explosion of data and computational efforts to extract 

meaningful knowledge through initiatives such as The Cancer Genome Atlas (TCGA), more data analytics efforts are 

needed to tackle the interpretation of this firehose of information from very complex systems. 

Many researchers have focused on finding genomic differences and similarities across different cancer types a field 

commonly known as Pan-Cancer analysis. This allowed for the generation of a genomic landscape of patterns to help 

generate new therapies and extend existing treatments in a particular cancer type to another [2]. Existing pan-cancer 

studies have studied correlations between protein expression patterns for 11 different cancer types [3, 4]. In 2013, Li 

et al developed a user-friendly computational platform named The Cancer Protein Atlas (TCPA) to gather, analyze 

and visualize proteomics data [4]. A year later, Akbani et al studied differentially expressed proteins across 11 cancer 

types using an integrative approach that revealed that protein levels are highly linked to cancer types and that there 

exist protein pairs such as MYH11 and RICTOR that are highly correlated across different tumor types [3]. Yet, many 

of the molecular mechanisms underlying these diseases are still not clearly understood creating a gap to achieve the 

cure. Thus, it is important to understand the mechanisms that characterize the different cancer types to see which 

treatments may overlap and transfer easily from one cancer type to another. 

Data analytics efforts have taken a predominant role to extract knowledge from a large amount of data and understand 

diseases such as cancer. In particular, there is a step in the data mining process called feature selection aiming to rank 

important variable predictors such as proteins that can describe groups of interests such as the diverse cancer types. 

There exist tons of these methods, each using a different scoring criterion and yielding different results depending on 

the application. Existing feature selection methods are mainly categorized as filters, wrappers and embedded methods. 

Many of these are often implemented in practice and the results from the best-performing approach are often utilized 
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for biological interpretation. Wrapper methods evaluate the performance of a given feature subset using data mining 

algorithms while embedded methods perform a search for an optimal subset of features that are built in the classifier 

structure thus making them specific to a given learning algorithm [4]. These convoluted methods (wrapper and 

embedded) tend to provide good performance in practice but tend to be computationally inefficient in many cases 

when compared to filter techniques. In particular, wrappers have a higher risk of overfitting than filters [5].  

Filter methods tend to be very fast and scalable. In many applications, they can provide as good results as those from 

wrappers and embedded approaches [5]. These filters calculate relevance scores for each feature that permits the 

feature ranking by importance. However, to the best of our knowledge, there are not many approaches that establish 

where to cut and extract important variables optimally. Many studies use statistical metrics, percentiles, and trial-and-

error thresholds to narrow the list of important features. For example, when the scores are p-values from multiple 

hypotheses one could establish a particular significance level after correction for experiment-wise error but even these 

have their limitations. Reducing the list of important variables if their adjusted p-values are less than 0.01 will mean 

that a feature with a p-value of 0.009 will be included in the importance list but a variable with a p-value equal to 

0.0101 will not when in reality they might be both important to evaluate further. Hence, there is a need for an automatic 

method that can extract important features from a list of scored features by looking at the changes in their scores which 

is focused on this work to help uncover important proteins that can characterize different cancer types. 

 

2. Methodology 
Data scientists commonly follow a general data-to-knowledge framework to solve a particular problem. Often, this 

framework consists of data selection, data processing, data transformation, data mining, integration and evaluation. In 

this work, the process is broken down into analogous steps depicted in Figure 1 and described in this section. 
 

 
 

 

 

 

 

 

 

 

Figure 1: General methodology framework. 

 

2.1 Data Selection & Preprocessing 

The focus of this research is to find distinct patterns across different types of cancer to uncover new knowledge 

regarding the relationship of these diseases using data mining techniques. This Pan-Cancer analysis will provide a 

comprehensive set of molecular patterns that are distinctive to each type of cancer. These patterns will be learned 

TCGA data repository which is a comprehensive platform of molecular data gathered through consistent and coherent 

protocols reducing factors of variability due to experimentation procedures [3]. There are many types of molecular 

assays available but for the purposes of this work, we have focused on data at the proteomic level since it can describe 

functional aspects of the tumorigenesis as embodied in the central dogma. Protein expression data using reverse-phase 

protein arrays (RPPA) is available within TCGA for a large number of tumor samples [4]. RPPA is a quantitative 

technology based on targeting specific antibodies to improve sensitivity and to assess several protein markers at the 

time across multiple samples in a cost-effective [6]. Once data is gathered from TCGA, we proceed to preprocess it 

for further use. Preprocessing is a stage where several important actions on the raw data are performed to facilitate its 

analysis (i.e. cleaning, reorganization). Irrelevant columns such as age and rows containing at least one missing value 

(known as NA) were removed, resulting in a data structure of 217 columns and 4,979 rows representing proteins and 

patient samples, respectively (see Table 1). There was information available for all 4,979 patient tumor samples 

regarding their diagnosed type of cancer. 

 

Table 1: Resulting dataset description after pre-processing. 

 

Categorical Response 

Variable 

Number of 

Patient Samples 
Numeric Predictor Variables Number of Proteins 

Cancer Type 4979 RPPA Protein Expression Levels 217 (e.g. ERAlpha) 

 

Data 

Selection 

TCGA 

Protein 

Expression 

Data 

Preprocessing 

• Removed rows 

with missing 

values (NA) 

• Removed 

Irrelevant 

Columns 

Feature Selection 

• Correlation Based Feature Selection 

(CFS) 

• Correlation (CA) 

• Gain Ratio (GRA) 

• Info Gain (IGA) 

• One R (ORA) 

• Symmetrical Uncertainty (SUA) 

Cut-off Threshold Methods 

• Standard Deviation (SD) 

• Interquartile Range (IQR) 

• Mean Absolute Deviation 

(MAD) 

• Tolerance Below 

Deviation (TBD) 

Performance 

Evaluation 

Classification 

Model using 

Random 

Forest 
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2.2 Feature Selection  

Feature selection methods are useful to determine which predictor variables (i.e. proteins) are relevant to the problem 

at hand (cancer subtype classification). In this work, a protein that is found highly over-expressed or under-expressed 

when compared from one cancer type to another could mean that this protein has a significant role in the pathways 

that govern particular cancers. To detect this over- or under- expression, many scoring feature selection methods will 

provide a high score. The scoring methods used in this work are: the Correlation Based Feature Selection (abbreviated 

as CFS), Correlation Attribute (CA), Gain Ratio (GRA), Info Gain (IGA), One R (ORA), Relief F (RFA) and 

Symmetrical uncertainty (SUA), all provided through the software Weka. For example, IGA is a common entropy-

based metric aiming to measure the amount of information gained by a particular feature. Moreover, in Figure 2 we 

provide an example of OneR scores in the column labeled “Average Merit” sorted from largest to smallest. More 

information on how each score is calculated can be found on Weka’s SourceForge site. 

 

2.3 Cut-off Threshold Methods 

Once these scores are sorted, a cut-off threshold must be established to reduce the number of features. Establishing 

this threshold is not an easy task and among the most common methods are the use of graphical methods, arbitrary 

percentile levels, and statistical metrics. Very often visual methods result in inconsistent results if the experiment were 

to be replicated while using percentile levels can leave out features with a similar score. In 2016, Pramokchon and P. 

Piamsa-nga used several simple statistical methods to determine this cut-off threshold [7]. Their methodology seeks 

to find the outlier cut-off threshold (θ) using The Standard Deviation (SD) Method, Interquartile Range (IQR) Method, 

and Mean Absolute Deviation (MAD) Method are described in Equations 1, 2, and 3, respectively. 

 

 𝜃𝑢𝑝𝑝𝑒𝑟 = 𝜇 + 𝛼 ∗ 𝜎 

where, μ = mean of score, σ = Standard deviation, α =  confidence coefficient (common α: 1.5 or 3) 
(1) 

 𝜃𝑢𝑝𝑝𝑒𝑟 = 𝑄3 + 𝛼 ∗ 𝐼𝑄𝑅 

where, Q3 = Upper Quartile, IQR = Q3 - Q1, α =  confidence coefficient (common α: 1.5 to 5) 
(2) 

 𝜃𝑢𝑝𝑝𝑒𝑟 = 𝑀 + 𝛼 ∗ 𝑀𝐴𝐷 

where, M = median, MAD = 1.483 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑀|), α =  confidence (common α: 2, 2.5 or 3) 
(3) 

 

Moreover, the proposed algorithm called Tolerance Below Deviation (TBD) has been developed to eliminate the 

“artistic factor” when determining a cut-off value for which to compare scores provided by the scoring methods 

implemented with Weka. The algorithm shown in Figure 2 has been named after the parameter created. To use the 

algorithm, there are several steps to take. First, the merit or score determined by Weka must be sorted from largest to 

smallest. Then, the differences between consecutive scores and the standard deviation of these differences must be 

calculated. Subsequently, the analyst must determine the number of scores’ differences that fall below the calculated 

standard deviation consecutively. This is demonstrated in the “Runs Below Deviation” column shown in Figure 2. 

The TBD parameter must be chosen by the user. This number can be determined by user experience or by 

implementing a sensitivity analysis to determine the best value for it. For visualization purposes, the differences (light 

blue) and the standard deviation of the differences (dark blue) have been graphed in Figure 2. The general idea of this 

algorithm is to establish a cut-off value where the differences between ranked features converge to a certain point. 

 

2.4 Performance Evaluation  

To evaluate and compare the performance of the proposed methods with those existing from the literature, we built 

classification models to distinguishing nineteen different cancer types (i.e. categorical response) based on the protein 

expression levels (numeric predictors). Several classifier modalities could have been implemented, in this work we 

only used random forest models using R [8] to evaluate the predictive performance of the different protein subsets 

extracted from the different cut-off threshold methods. The main parameters in random forest are the number of 

variables evaluated before determining a split (mtry) and the number of trees used before averaging the results (ntree). 

These parameters, mtry and ntree, can be optimized by iterating a set of possible value combinations. The execution 

time to optimize these parameters depends on the number of variables that are determined in the feature extraction 

stage, see Exec. time column in Table 3. Among the performance metrics evaluated in this study are: (1) the execution 

time of the parameter tuning/running of the algorithms, (2) the accuracy of the model calculated as 1 minus the out-

of-bag (OOB) error, and (3) the area under the curve (AUC) of the receiver operating characteristic (ROC) [9].  
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Protein 
Avg. 

Merit 
Differences 

Runs Below 

Deviation 

 

PR 31.46 2.27 0 

ERALPHA 29.20 0.66 0 

FASN 28.54 0.63 0 

PKCALPHA 27.91 0.05 1 

CLAUDIN7 27.86 0.86 0 

PKCALPHA_pS657 27.00 0.63 0 

ERK2 26.37 0.16 1 

AR 26.21 0.08 2 

 

Figure 2: Demonstration of Tolerance Below Deviation (e.g. TBD = 2), Standard Deviation = 0.200 
 

3. Results 
3.1 Evaluation of Cut-off Threshold Methods 

To optimize the selection of the TBD parameter in the proposed approach, the OOB error and execution time to 

classify the nineteen cancer types was measured across a range of possible TBD values (1-15) using Random Forest 

across six different scoring FS methods. The number of trees at each of these random forest models were set to 5000 

at which their error rate reached steady state while the square root of the number of variables (n) was used as the 

recommended mtry value. To minimize both OOB error rate and execution time, TBD = 7 was chosen as a good trade-

off point where most scoring methods gave an accuracy of around 90% (solid lines) as shown in Figure 3. After tuning 

the TBD parameters, we proceeded to compare its performance with other cut-off methods.  The proposed method, 

TBD, consistently showed smaller OOB error rates than those from SD, IQR, and MAD methods across all scoring 

FS approaches as shown in Table 2. These methods consistently selected a very small number of proteins. 
 

 
 

Figure 3: Sensitivity analysis plots. 
 

Table 2: Comparison of TBD against existing SD, IQR, and MAD methods using OOB error rate from Random Forest 

classifiers. The variable p is the number of proteins kept after the cut-off.  
 

Attribute 

Evaluator 

Standard Deviation 

(SD) 

Interquartile 

(IQR) 

Mean Absolute 

Deviation (MAD) 

Tolerance Below 

Deviation (TBD) 

p 
OOB 

Error 
p 

OOB 

Error 
p 

OOB 

Error 
p 

OOB 

Error 

Correlation 2 56.88% 0 -- 2 56.82% 20 9.46% 

GainRatio 4 32.68% 0 -- 6 21.23% 29 8.17% 

InfoGain 6 20.73% 2 53.75% 12 12.77% 21 9.08% 

OneR 6 20.89% 2 53.69% 13 12.45% 29 8.58% 

ReliefF 6 25.51% 4 35.23% 16 11.67% 11 17.90% 

SymmetricalUncert 5 23.68% 2 53.83% 10 15.67% 18 9.86% 

 

Although accuracy has mostly been the basis of discussion, a desirability function (See Eq. 4) was constructed to 

compare how well the model estimates several metrics using a weighted average. The model metrics considered were 

the prediction accuracy, sensitivity and (AUC), and the amount of time the model takes to run (execution time). The 

weights 40%, 40%, and 20% were assigned to accuracy, AUC, and execution time, respectively. The desirability 
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values from scoring methods with TBD outperformed the CFS desirability of 0.563 in all cases showcasing the 

superiority of the TBD approach. Additionally, the ReliefF scoring method was eliminated from further analysis as it 

showed low accuracy and desirability values (see Figure 4 & Table 3).  
 

𝐷 = 𝑊𝑒𝑖𝑔ℎ𝑡1 ∗ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑊𝑒𝑖𝑔ℎ𝑡2 ∗ 𝐴𝑈𝐶 −  𝑊𝑒𝑖𝑔ℎ𝑡3 ∗ 𝑆𝑐𝑎𝑙𝑒𝑑_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 (4) 
 

Table 3: Results with parameter tuning using TBD = 7 including CFS. 
 

Attribute Evaluator 
# 

Proteins 
Cut-off 

Mtry, 

Ntree 

Accuracy 

(Acc.) 

ROC 

AUC 

Exec. 

time 

Desirability 

Function (D) 

CfsSubsetEval  153 10 folds 9, 4000 95.02% 95.81% 2.4 days 0.563 

Correlation w/ TBD 20 >0.157 2, 5000 90.54% 91.23% 1.6 hours 0.722 

GainRatio w/TBD 29 >0.240 3, 5000 91.83% 94.06% 3.7 hours 0.731 

InfoGain w/TBD 21 >0.592 3, 5000 90.92% 93.12% 1.7 hours 0.730 

OneR w/TBD 29 >21.519 2, 5000 91.42% 93.20% 3.5 hours 0.726 

ReliefF w/ TBD 11 >0.071 3, 5000 82.10% 85.81% 1.4 hours 0.667 

SymmetricalUncert 

w/TBD 
18 >0.196 2, 5000 90.14% 92.46% 2.2 hours 

0.723 

Union of Proteins  

(w/o CFS and ReliefF) 
42 -- 4, 5000 93.41% 95.00% 9.5 hours 

0.721 

 

3.2 Pan-Cancer Analysis Important Variables 

To explore the importance of those extract variables using the cut-off methods we evaluated their prevalence across 

methods. As shown in Table 4, nine proteins were commonly found to characterize the cancer types across all scoring 

FS methods. Though, the union of proteins across all scoring methods with TBD reached a high 93% accuracy and 

low execution time of 9.5 hours. A heatmap of these 42 variables demonstrates their relationship. For example, cancers 

like Ovarian (PAAD) and Stomach (STAD) tend to have overexpression of the MHY11 protein in their tumors.  

     
 

Figure 4: Important proteins (a) Venn diagram showing the relationship of proteins between feature selection methods 

using the TBD method. (b) Heatmap showing the relationships in protein expression across the 19 cancer types. 

 

3.3 Biological Interpretation 

Interpreting biological mechanisms from complex data mining methodologies is a hard task to achieve. Results from 

many well-performing methods are sometimes difficult to infer but extremely needed to advance the science of clinical 

translation. However, several studies such as the one presented here enable the extraction of potential biomarkers that 

can aid the development of new therapies. Here, we consistently found nine proteins across different feature selection 

methods to be relevant to classify the nineteen different cancer types as shown in Figure 4 (a). Based on the National 

Center for Biotechnology Information (NCBI) annotation repository, all of these proteins have previously been 

associated with cancer which validates the approach presented in this work. ERALPHA is one of the most relevant 

proteins in the study of breast cancer as well as many other hormone-related (i.e. PR). Similarly, AR is been widely 
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studied to understand prostate cancer. Nonetheless, interesting results are those of GATA3 and CYCLINB1 that are 

linked to many cancer types across different human organs. There are many cancer types in the group of studied 

cancers that are not well represented such as glioblastoma which could improve the accuracy performance. 
 

Table 4: List of the top 9 commonly relevant proteins 

 

Protein Protein Name 
Cancers associated from NCBI Annotation 

(https://www.ncbi.nlm.nih.gov/gene/) 

AR Androgen receptor Prostate, Breast, Bladder 

CYCLINB1 Mitotic-specific Cyclin B1 Breast, Cervical, Colorectal, Lung 

ERALPHA Estrogen receptor 1 (alpha) Breast, Endometrial 

GATA3 GATA binding protein 3 
Breast, Colorectal, Acute lymphoblastic leukemia, 

Bladder, Prostate, Renal 

PKCALPHA Protein kinase C alpha Colon, Endometrial, Pancreatic 

PKCALPHA_Ps657 
Similar variant to Protein 

kinase C alpha 
Colon, Endometrial, Pancreatic 

PR Progesterone receptor Breast, Endometrial, Prostate, Ovarian 

FASN Fatty acid synthase Lung, Ovarian, Bladder, Liver 

TIGAR 
TP53 induced glycolysis 

regulatory phosphatase 
Lung, Renal 

 

4. Conclusions 
This work has presented a new approach to establish an automatic threshold and enabled the extraction of important 

predictors from scores provided by filter feature selection methods. In practice, this is a difficult problem to tackle and 

at times the interpretation can be hindered and biased due to trial-and-error cut-off values established. To lessen this 

impact, the proposed method has shown results that support a more computationally efficient way to automatically 

select an accurate set of relevant features across all scoring methods with desirability values greater than the 0.563 

from the non-scoring FS approach, CFS. Moreover, this methodology found important features to characterize 

nineteen different cancer types at the proteomic level. Many of these important proteins are highly associated with 

many cancers validating the usability of this approach. In the future, this approach should be tested across different 

problems, in particular, in applications with less number of classes than the pan-cancer problem investigated here 

since it may provide accuracy comparable to top non-scoring methods like CFS in less time. 
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