Luteolin suppresses not only squamous differentiation of bladder cancer but cancer growth via regulation of mammalian rapamycin pathway

Keitaro Iida1,2, Aya Naiki-Itō, Takashi Nagai1, Satoshi Nozaki1, Toshihiko Etani1, Taku Naiki1,2, Ryoosuke Ando1, Noriyasu Kawai1, Satoru Takahashi1, Takahiro Yasui1
1Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences
2Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences

Abstract

Introduction and Objectives

Luteolin is a natural flavonoid with strong antioxidative properties. The anti-cancer effects of luteolin against several cancer have been reported, however, it is not known about bladder cancer. Here, we determined to explore the anti-cancer effects of luteolin against bladder cancer.

Methods

Human urethral carcinoma cell line T24 and 5637 were used. WST-8 and 4,5-diamino-2-methyl-3-(phenyltetrazolium bromide) (MTT) assays, and western blot analysis were used for evaluating cell viability and protein expression. Three-hour activity and ROS production were evaluated using thiosemicarbazide and DCFH-Da assays. Furthermore, we examined the impact of luteolin on metabolite (N-acetyl-p-butyryl-l-cysteine) and thioredoxin (BMR)-induced bladder cancer models (luteolin concentrations were: 20µM and 100µM, respectively).

Results

Luteolin induced a dose-dependent reduction in the number of viable cells. It also increased thioredoxin activity and decreased intracellular ROS production. Luteolin downregulated phospho-pS6K and phospho-4EBP1, which were substrates of mTOR, and they were controlled by thioredoxin inhibitor PX-12, indicating luteolin inhibited mTOR pathway through the regulation of thioredoxin and ROS. In vivo study, BMM-induced rat bladder cancer was inhibited by the oral administration of luteolin and also showed a decreased Ki67-labeling index and p-STAT3 expression. Further, both plasma and urine luteolin in 10-20 ppm concentrations were strongly associated with the inhibition of cell proliferation (r = 0.31, 0.41, respectively) and mTOR signaling (r = 0.80, 0.62, respectively). Moreover, a significant decrease in the squamous differentiation of bladder cancer is attributed to plasma luteolin (10-20 ppm concentrations (p = 0.01)).

Conclusions

Luteolin may represent another natural product-derived therapeutic agent that acts against bladder cancer by up-regulating thioredoxin activity and inhibiting mTOR signaling.

Results

1. In vitro

Anti-proliferative effect

The regulation of mTOR activity

The regulation of intracellular ROS production and thioredoxin activity

Experimental using thioredoxin inhibitor

2. In vivo

Subcutaneous BGC3 xenograft model

BMM induced rat bladder cancer carcinogenesis model

Evaluation of squamous differentiation

Exploration of metabolite of luteolin

Conclusions

Luteolin, and in particular its metabolized product, luteolin-3-glucuronide, may represent another natural product-derived therapeutic agent that acts against bladder cancer by inhibiting mTOR signaling.