

Introduction

Pulse modulated Ho:YAG (λ =2.1 µm) laser lithotripsy (Moses) is a novel method where a first pulse creates a vapor bubble between fiber-tip and stone followed by a second pulse for fragmentation resulting in enhanced removal, reduced retropulsion and increased radiant energy delivery to the stone. Reported advantages include ability to work in non-contact mode and greater lithotripsy efficiency even in contact mode [1]. We evaluated the mechanisms of pulse modulated lithotripsy by monitoring stone fragmentation using a fast video camera, an optical hydrophone, and Optical Coherence Tomography (OCT).

Methods

- . BegoStone Preparation:
- 5:1 power to water by weight
- 2 mm thick
- 2. Ablation:
 - Lumenis P120 Ho:YAG laser
 - Single 1 J pulse per location
 - 1 mm separation fiber to stone \bullet
 - Moses-Distance, Moses-Contact and Non-Moses operating modes
 - Hydrated (wet) and dry stones
 - In air and in water
 - 12 total conditions ullet
 - n=15 repetitions ullet
- 3. Fast Video Recording:
 - Photron Fastcam Mini UX100
 - 50,000 frames per second
- 4. Optical Coherence Tomography
 - Crater volume measurements computed using edge detection
 - ANOVA test for statistical significance

Figure 1. Photograph of ablation setup including linear actuator for ablation using a single pulse and a fast video camera.

Mechanism of Pulse Modulated Holmium: YAG Lithotripsy

Jason B. King^{1*}, Nitesh Katta^{1*}, Austin B. McElroy¹, Sahar Alaei^{1*}, Sabish Shrestha¹, Bonnie Chan¹, Thomas E. Milner^{1*}, Joel M.H. Teichman² **1.** The University of Texas at Austin | *Biomedical Engineering 2. University of British Columbia | Urological Sciences

pulse, the time between frames shown is 200 µs. Previous studies have show increased ablation using Moses-Distance mode at a fiber distance of 1 mm [1]. The first pulse in the Moses-Distance pulse sequence forms a vapor bubble allowing the second pulse in the sequence a clear path to the stone.

Figure 2. Example video from the fast camera for wet stones in air using Non-Moses and Moses-Distance Pulses. For each pulse, the time between frames shown is $60 \mu s$. Ablation debris are observed in both pulses of the Moses-Distance pulse sequence, with more debris observed on the second pulse in the sequence.

supported by a high ablation volume for in-water and in-air occur, suggests mechanism of laser-stone interaction and understanding of Ho:YAG laser lithotripsy mechanisms.

THE UNIVERSITY **OF BRITISH COLUMBIA**

	Moses- Contact	Moses- Distance	Non-Moses	p-value MC vs MD	p-value MC vs NM	p-value MD vs NM
	0.031±0.004	0.042±0.003	0.023±0.003	2.3E-7*	1.5E-5*	2.2E-7*
	0.027±0.006	0.032±0.005	0.023±0.005	0.18	0.42	1.4E-5*
ater	0.023±0.005	0.028±0.004	0.018±0.003	0.065	0.032*	2.3E-7*
ater	0.022±0.005	0.024±0.004	0.015±0.002	0.96	7.7E-4*	6.5E-7*
A	0.35	2.3E-7*	1.0			
W	1.0	0.24	0.77			
A	1.6E-5*	2.2E-7*	0.034*			
1.	0.047*					

References

1. J Endourol 2019 Feb;33(2):120-126. doi: 10.1089/end.2018.0572

2. J Urol. 2012 Mar;187(3):914-9. doi: 10.1016/j.juro.2011.10.147

3. J Endourol. 1999 Apr;13(3):181-90. doi: 10.1089/end.1999.13.181