Putative tumor suppressor ELLZ2 is required for proliferation and survival of AR-negative
prostate cancer cells
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cycle arrest and profound apoptosis, which was accompanied by the induction S
of genes associated with cell death and survival pathways. These
observations suggest that ELL2 is a potential oncogenic protein required for
survival and proliferation in AR-negative prostate cancer cells.
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Fig.5 BrdU incorporation in PC-3 (A) and DU145 (B) cells transfected with
nontargeted control (50 nM siControl ) siRNA, targeted to ELL2 (25 nM
SiELL2+25 nM siControl), target to STAT1 (25 nM siSTAT1+25 nM siControl), Fig 6. PC-3 cells (A) were treated with 25nM siELL2 or combination of siELL2 and siSTAT1, while DU145 cells Fig 7 AT ol lusi ¢ cell death of PC-3 and DUL45 cell
and both (25 nM siELL2+25 nM siSTAT1) (siDouble). Upper panel shows BrdU- (B) were transfected with 25nM siELL2, with 1.3 to 3-fold increase of cell populations of ELL2-knockdown group 'd- f' ' drypin. dge ex(;: u.T:L(IJ\InAasszy © cbe g .ealt:. 05 D- an ﬁe >
positive nuclei (red), and lower panel shows nuclear staining with DAPI (Blue). in S phase compared to control group, as assessed by flow cytometry. *p<0.05, ** p< 0.01, ** p < 0.001, trans ec:eSDw% |”n icate S| as Iescg © hmFI 'g. >. Data represent_t €
_ o _ o _ _ Images were acquired using an 40x objective. Quantification of BrdU ****p<0.0001). C. PC-3 and DU145 cells were untreated or were transfected siELL2, siSTAT 1or both for 72 h and means. - € apqpt05|s was ana y;e with Flow cytometry apoplosis
Fig.4 Effect of ELL2 and STAT1 knockdown individually or in combination (siDouble) on colony formation. PC-3 incorporation is shown as mean percentage + SD of BrdU-positive cells relative analyzed for the expressions of cyclin D,p-CDK2, and cycllin E by Western blotting. GAPDH was used as a analysis using Anngxm V-FI.TC/7-AAD in PC-3 (B) and DU145 (C) cells
(A) and DU145 (B) cells were treated with indicated siRNAs as descdribed in Fig. 5, prior to colony formation to the total number of cells. Cells were counted from two different fields for each loading control. ELL2 knockdown induces cyclin Eexpression and repressed cell cycle related p-CDK2 and transfected with indicated siRNAs. D. PC-3 and DU145 cells were untreated or
assay. The colonies were visualized by crystal violet staining. The colonies in each dish were imaged by well from triplicate wells and 50-170 cells per field. * p < 0.05; ** p < 0.01, *** p < Cyclin D were transfected siELL2, siSTAT 1or both for 72 h and analyzed for knockdown
ChemiDoc™ Touch Imaging System and counted by Image Pro Plus software for each group of cells. *, p < 0.05, 0.001 : .05; .01, efficiency. ELL2 band denoted by black arrow. GAPDH was used as a loading

*% 5 < 0,001, **** p < 0.0001. control. ** p< 0.01, *** p < 0.001, *** p < 0.0001.



