

Siqi Liang¹, Andrew Chen², Jessica Nguyen², Jian Chen², Erik Vanstrum², Samuel Mingo², Yan Liu¹, Andrew J. Hung² 1. USC Institute of Urology; 2. USC Viterbi Engineering

Introductions and objectives

- Automated performance metrics (APMs) are a validated objective measure of surgeon performance
 - APMs include instrument motion tracking, Endowrist manipulation, and system events data
- Machine Learning (ML) has shown that APMs, especially during the vesico-urethral anastomosis (VUA) of the RARP, are predictive of outcomes such as continence recovery time.
- We now divide the VUA into individual stitches and substitches and use ML to analyze APMs to distinguish surgeon experience.

Methods

- 68 VUA's were recorded by a da Vinci systems data recorder.
- Each stitch was broken down into 3 sub components.

- APMs were reported for 1,570 stitches and 4,708 sub-stitches
- The 8 faculty surgeons and 9 residents were classified as experts (≥ 100 cases) and novices (< 100 cases).
 - Experts were then further divided into ordinary experts (OE) and super-experts (SE) (≥ 2000 cases).

Center of Robotic Simulation and Education

Distinguishing surgical expertise using machine learning and automated performance metrics during sub-stitches of vesico-urethral anastomosis

Methods

Reported APMs were organized into three datasets: GlobalSet (whole stitch), RowSet (independent sub-stitches), and ColumnSet (associated sub-stitches). GlobalSet RowSet Stitch 1 Ctotal Stitch 2 Stitch 3 Stitch : Case 1 Stitch 3 Stitch level data; No sub-stitch Sub-stitch components;

component data provided

Evaluated independently

- Forest) to each of the three datasets to solve two classification tests: experts vs novices and ordinary-experts vs super-experts.
- 207 APMs per sub-stitch were evaluated for the stability of their importance to each classification task through a Jaccard index.
- The final feature importance after 20 trials provided the ability to rank variables in order of importance to the model

• In both classification tasks, experts vs novice and OE vs SE, ColumnSet produced the highest accuracy in a single model.

Novice Accuracy Ordinary Expert vs Super Expert Accuracy

Expert vs

and SE

VUA of a RARP

We applied three ML models (AdaBoost, Gradient Boosting, and Random

Sub-stitch components; Evaluated

as related parts of the same stitch

Results

	ColumnSet	RowSet	GlobalSet
daBoost	0.724 +/- 0.016	0.712 +/- 0.009	0.699 +/- 0.018
andom Forest	0.732 +/- 0.005	0.716 +/- 0.003	0.728 +/- 0.009
Fradient Boosting	0.727 +/- 0.010	0.721 +/- 0.006	0.672 +/- 0.001

	ColumnSet	RowSet	GlobalSet
daBoost	0.801 +/- 0.014	0.772 +/- 0.009	0.774 +/- 0.010
andom Forest	0.761 +/- 0.007	0.761 +/- 0.004	0.769 +/- 0.009
bradient Boosting	0.770 +/- 0.006	0.784 +/- 0.006	0.759 +/- 0.002

Stable feature importance scores highlighted Endowrist® articulation in differentiating experts and novices while needle handling/targeting (C^1) was more important when comparing OE

Conclusions

Surgeon performance measured by APMs on a granular substitch level more accurately distinguishes expertise when compared to summary APMs over whole stitches • ML accurately classifies expertise when analyzing APMs of the

USC Institute of Urology