PILOT EXPERIMENTAL ANALYSIS OF MEATUS CONFORMATION AND DEVELOPMENT OF NOVEL MEASUREMENTS FOR ABERRANT URINARY STREAM IN 3D PRINTED URETHRAS DERIVED FROM CADAVERIC MODEL

Andrew J Cohen¹, German Patino², Seyed Mirramezani³, Sudarshan Srirangapatanam⁴, Anas Tresh⁴, Bhagat Cheema⁴, Jenny Tai⁵, Dylan Romero⁵, Anthony Enriquez⁴, Shawn Shadden³, Benjamin N Brever^{4,6}

1: Brady Urological Institute, Johns Hopkins Bayview Medical Center 2: Hospital Universitario San Ignacio, Bogota 3: University of California, Berkeley, Department of Mechanical Engineering 4: Department of Urology, University of California San Francisco 5: Makers Lab Library, University of California San Francisco 6: Department of Biostatistics and Epidemiology, University of California San Francisco

Background

Methods

models

recorded

concurrently

Evolution of uret

• cadaveric tissues \rightarrow 3D-printed

were affixed to a fluid pump

simulating micturition

dye captured on fabric

• penile tissue & 3D printed models

• spray pattern area, deviation from

• additional experiments performed

computation modelling occurred

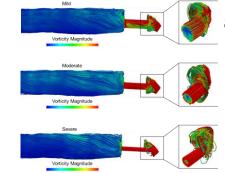
with altered urethral meatus

normal location, & flowrates

- 10% of male adults have split, sprayed or dribbled stream
- Spray is an underappreciated OOL outcome for urethral surgery
- No current method to evaluate urinary stream deviation
- What is 'normal' urine spray?
- Remains unknown how urethral surgeries affect stream attributes

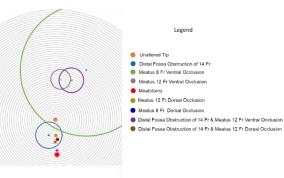
Objective

- Develop and test method to measure spray
- Experimentally recreate normal and abnormal anatomical conformations w/ 3D printing & cadaveric surgery


Left: Experimental set up for flow experiments; a: modified 18 Fr

silicone tube affixed to cadaveric penis, €: MedAmicus 4114UF Lumax Computational modeling demonstrating increased Cystometry System, Q: Uniclife Controllable DC Water Pump Right: Example urinary spray pattern result of cadaveric model with radial measurement schema overlay

Cadaveric vs. 3D Printed Models Flow & Spray


Dynamics Matched						
Specimenα	Cadaver Qmax	Matched Model Qmax	P-	Cadaver Spray Area	Model Spray Area	
(#)	(ml/s)	(ml/s)	value	(cm ²)	(cm ²)	,
1	21.7	19.0	0.04	38.5	70	
2	21.0	16.3	0.03	48	31.3	
3	23.3	4.6	0.04	48	70	
4	22.9	6.3	0.05	20	42.5	
Average	22.2	11.6	<0.01	38.6	53.4	
	(#) 1 2 3 4	Specimen ^α Qmax (#) (ml/s) 1 21.7 2 21.0 3 23.3 4 22.9	Cadaver Matched Specimen ^a Qmax Model Qmax (#) (ml/s) (ml/s) 1 21.7 19.0 2 21.0 16.3 3 23.3 4.6 4 22.9 6.3	Cadaver Matched Specimen ^a Qmax Model Qmax P- (#) (ml/s) (ml/s) value 1 21.7 19.0 0.04 2 21.0 16.3 0.03 3 23.3 4.6 0.04 4 22.9 6.3 0.05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

We developed a novel urinary spray detector and created 3Dprinted urethral models suitable for *dynamic flow experiments* Urine spray worsens with distal urethral obstruction These methods have *paradigm shifting potential* in the future study of urethral surgery

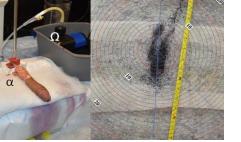
area for mild, moderate, and severe obstruction, respectively

> Visualization of Voiding Strength and Spray Stratified by Cadaveric Tip Alternations

O Outline-Area of spray, increasing size corresponds to greater sprauy^e • Solid circles - Increasing size corresponds to increa alized to unaltered, normal scenario at coordinates 0.0.0 maxs 22 m/sec and soray area 38.6 cm

Twitter: @brady urology @AJCuro Facebook: Brady Urology at Johns Hopkins

Summary of Tip Alterations and Relative Spray Effects


Tip Alteration	Relative Flow Rate, %	Relative Spray, %	Relative Distance*, cm
naltered	Ref	Ref	Ref
istal Fossa Obstruction of 14 Fr	52	748	-11
leatus 8 Fr Ventral Occlusion	6	3740	38
leatus 12 Fr Ventral Occlusion	28	571	23
leatotomy	120	203	-18
istal Fossa Obstruction of 14 Fr & Meatus 12 Fr Ventral	29	706	27
istal Fossa Obstruction of 14 Fr & Meatus 12 Fr Dorsal	60	117	-10
leatus 12 Fr Dorsal Occlusion	72	29	-11
leatus 8 Fr Dorsal Occlusion	48	82	-15

* Negative Distances assigned for y axis (short/long)

Conclusions

- Successful development of tool to experimentally measure urine spray
- 3D printed models underperform relative to cadaveric tissues
- yet: cheap, safe, & reproducible manner to study urine flow if improved
- Increasing obstruction increases spray area and reduces flow rates in cadaveric model
- Computational models highlight potential role of vorticity in spray

value

0.02

0.02 0.03

0.03

0.11

vorticity with 83%, 90% and 96% reduction in lumen