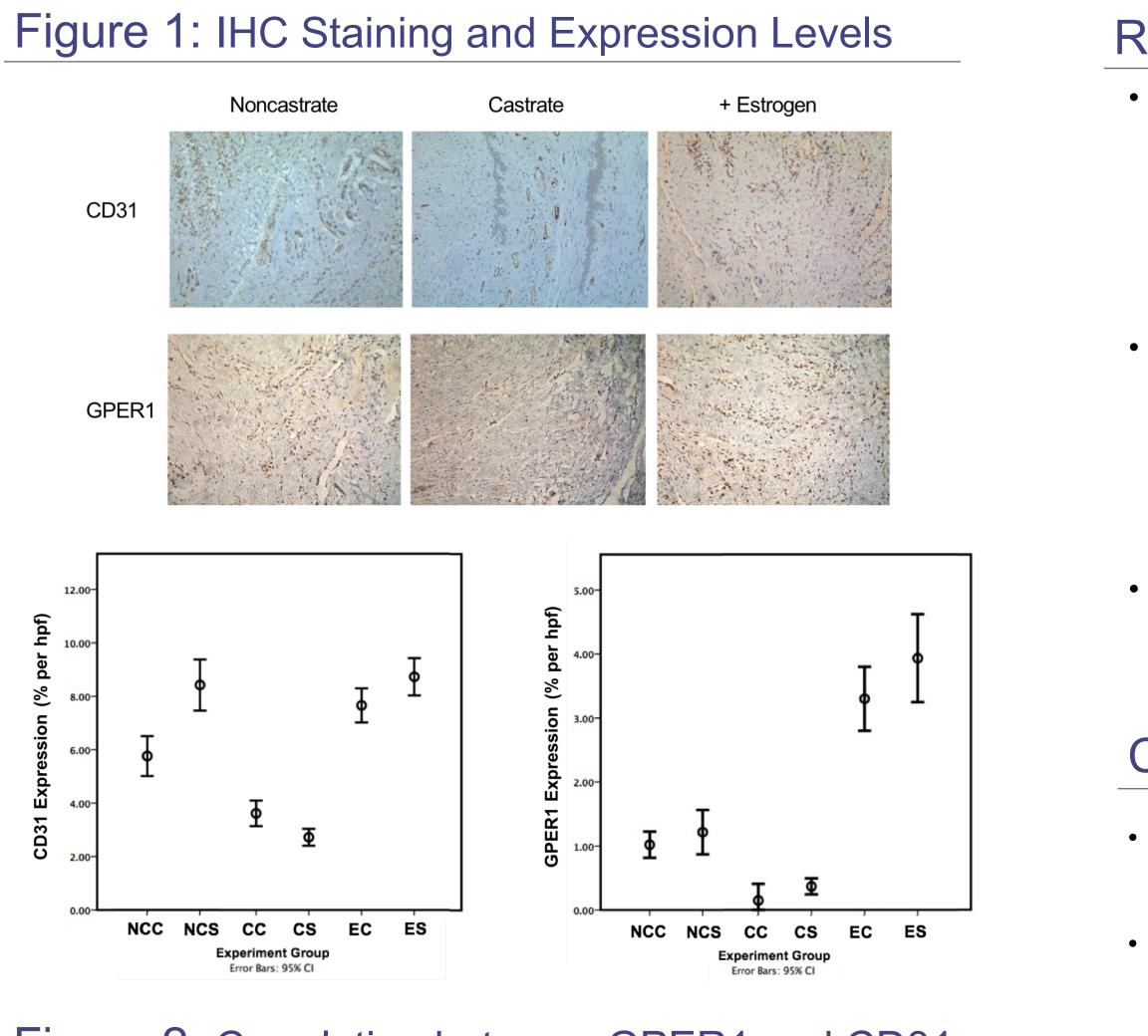
Estrogen Reverses the Atrophic Effects of Hypogonadism on the Rat Urethra Emily M. Yura^a, Matthew I. Bury^b, Yvonne Chan^{a,b}, Allen F. Morey^c, Arun K. Sharma^{a,b, d-f}, Matthias D. Hofer^a

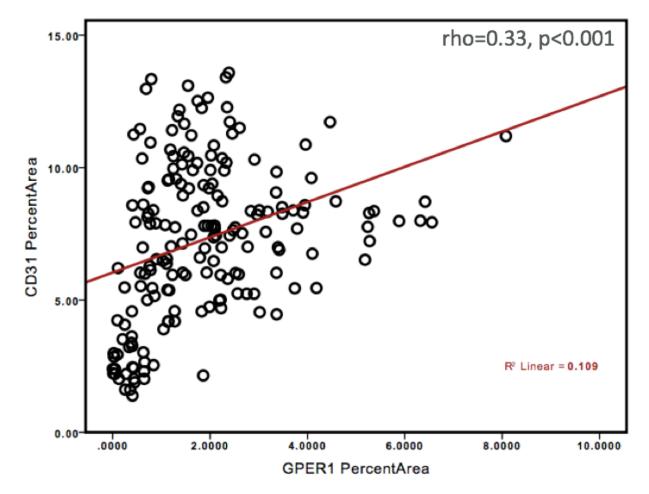
^aDepartment of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL; ^bDivision of Pediatric Urology, Department of Urology, Department of Urology, IL; ^bDivision of Pediatric Urology, Department of Urology, IL; ^bDivision of Pediatric Urology, IL; ^bDivision of Pediatric Urology, Department of Urology, IL; ^bDivision of Pediatric Urology, IL; UT Southwestern, Dallas, TX; dStanley Manne Children's Research Institute, Northwestern University, Chicago IL; Center for Advanced Regenerative Engineering, McCormick School of Engineering, Northwestern University, Evanston IL

Background

- Hypogonadism is associated with worse clinical outcomes in artificial urinary sphincter (AUS) surgeries¹, likely related to decreased periurethral vascularity²
- Testosterone replacement therapy (TRT) is not an option in hypogonadal men on androgen deprivation therapy
- Estrogen, which has been demonstrated in male urethral tissue³, has proangiogenic properties⁴ and has shown to accelerate healing in hormone deprived models⁵
 - Could estrogen replacement therapy (ERT) be an alternative to TRT in hypogonadal men?


Research Objective

• To evaluate whether estrogen supplementation restores deficient periurethral vascularity in the hypogonadal rat urethra


Methods

- Translational study approved by Institutional Animal Care and Use Committee of Northwestern (Protocol #IS00004702)
- 36 male Sprague-Dawley Rats split into three groups (Table 1):
 - NC: 12 noncastrated rats
 - C: 12 castrated rats
 - E: 12 castrated, estrogen supplemented rats (estradiol valerate 1mg/kg q2w)
- Half of each group underwent urethroplasty surgery (C or S suffix)
- At 8 weeks following surgery, urethral tissue examined using IHC:
 - CD31 vessel marker
 - GPER1 membrane-bound estrogen receptor

Table 1: Intervention Allocation						
	Noncastrate Cohort		Castrated Cohort		Estrogen Cohort	
	NCC	NCS	CC	CS	EC	ES
Surgical Castration			х	x	x	х
Estrogen Supplementation					x	x
Urethroplasty Surgery		x		x		х

Figure 2: Correlation between GPER1 and CD31

Abstract Number: 20-8700, MP 60-17

Results

- CD31 Expression (Figure 1):
 - EC had greater expression than both NCC and CC (p<0.001):
 - EC: 7.6% NCC: 5.9% CC: 3.6%
 - ES and NCS had similar expression (p=0.34), both greater than CS (p<0.001)
 - ES: 8.7% NCS: 8.2% CS: 2.8%
- GPER1 Expression (Figure 1):
 - EC had greater expression than NCC (p<0.001) • EC: 3.3% NCC: 1.0%
 - ES had greater expression than NS (p=0.005) • ES: 3.9% NCS: 1.2%
 - CC and CS with virtually no expression

• GPER1 positively associated with CD31 expression (r=0.33, p<0.001) (Figure 2)

Conclusions

- In castrate rats, estrogen supplementation restored periurethral vascularity to the level of, or greater than, expression seen in noncastrate control rats
- Increased vascularity was associated with increased GPER1 expression
 - This suggests GPER1 is involved in the tissue response to estrogen supplementation *in vivo* in the male rat urethra

 These findings provide a basis for employing ERT as an alternative to TRT in hypogonadal men with prostate cancer in order to optimize surgical outcomes in men at high risk for AUS erosion

References

5.

Hofer MD, Morey AF, et al. Low Serum Testosterone Level Predisposes to Artificial Urinary Sphincter Cuff Erosion. Urology (2016);245-249.

Hofer M, et al. Low Testosterone Levels Result in Decreased Periurethral Vascularity via Androgen Receptor-mediated Process: Pilot Study in Urethral Stricture Tissue. Urology (2017);17—180.

Bodker A, et al. Estrogen receptors in the human male prostatic urethra and prostate in prostatic cancer and benign prostatic hyperplasia. Scand J Urol (1999);33(4):237-42.

Wilkinson, H.N. and M.J. Hardman, The role of estrogen in cutaneous ageing and repair. Maturitas, 2017. 103: p. 60-64.

Trenti, A., S. Tedesco, C. Boscaro, et al., *Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.* Int J Mol Sci, 2018. 19(3).