Impact of lymphovascular invasion on overall survival in patients with prostate cancer following radical prostatectomy according to pathological tumor stage

Marcus L. Jamil MD¹, Nikola Rakic¹, Jacob Keeley MS¹, Akshay Sood MD¹, Natalija Kovacevic¹, Alyssa Danno¹, James O. Peabody MD¹, Mani Menon MD¹, Craig G. Rogers MD¹, Firas Abdollah MD¹

BACKGROUND

- Histopathological assessment and subsequent pathological staging following radical prostatectomy (RP) remains pivotal in allowing providers to determine the next appropriate step in care.¹
- Lymphovascular invasion (LVI) has been recognized as an adverse pathological feature in prostate cancer (PCa)^{2,3}
 - Estimated prevalence of LVI: 5.1% to 52.9%
 - LVI has been association with higher Gleason grade, pathological T & N stage, risk of seminal vesical invasion and biochemical recurrence (BCR).
- The effect of LVI on overall survival (OS) has not been well established.

OBJECTIVE

• To assess the impact of LVI on overall survival (OS) in patients following RP.

MATERIALS AND METHODS

- All patients were identified within the National Cancer Database (NCDB)
- Patients with histologically confirmed nonmetastatic PCa with positive or negative LVI status between 2010 to 2015 were included in analysis
- Patients prior to 2010 were excluded due to lack of LVI recording
- Primary Outcome:
- 5-year OS in patients with and without LVI on final pathology stratified by pathological T stage
- Kaplan-Meir analysis used to assess overall survival of patients with and without LVI stratified by pathological tumor stage

¹VCORE – Vattikuti Urology Institute Center for Outcomes Research, Analytics and Evaluation, Henry Ford Hospital, Detroit, MI; ²Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI

Table 1: Descriptive characteristics of all patients stratified by the presence or absence of lymphovascular invasion on final pathological specimen within the National Cancer Database between 2010 to 2015

	Entire Cohort	- LVI	+ LVI
LVI		214,946 (92.4)	<mark>17,758 (7.6%)</mark>
Gleason <=6	63,631 (27.3%)	62,799 (29.2%)	832 (4.7%)
Gleason 3 + 4	103,030(44.3%)	98,872 (46%)	4,158 (23.4%)
Gleason 4 + 3	37,052 (15.9%)	32,250 (15%)	4,802 (27%)
Gleason 8 - 10	<mark>24,859 (10.7%)</mark>	<mark>17,187 (8%)</mark>	<mark>7,672 (43.2%)</mark>
pT2	174,838(75.1%)	169,615 (78.9%)	5,223 (29.4%)
рТЗа	<mark>40,281 (17.3%)</mark>	<mark>34,730 (16.1%)</mark>	<mark>5,551 (31.2%)</mark>
pT3b	<mark>17,585 (7.6%)</mark>	10,601 (4.9%) 6,984 (39.3%)	
pN0	138,045 (59.3%)	127,236 (59.2%)	10,809 (60.9%)
pN1	<mark>6,129 (2.6%)</mark>	<mark>2,617 (1.2%)</mark> 3,512 (19.8%)	
pNX	50,535 (21.7%)	48,764 (22.7%)	1,771 (9.9%)

Table 2: Multivariable competing risks analysis and hazard ratios of all patients with histologically confirmed non-metastatic PCa with positive or negative LVI status between 2010 to 2015 within the National Cancer Database, stratified based on pathological tumor stage

	pT2	pT3a	pT3b
LVI	1.11	<mark>1.22</mark>	<mark>1.41</mark>
Hazard Ratio	p = 0.23	p = 0.02	P < 0.0001

Figure 1. Kaplan-Meier overall survival estimates of all histologically confirmed non-metastatic PCa with positive or negative LVI status between 2010 to 2015, within the National Cancer Database, stratified based on pathological tumor stage

RESULTS

- 232,704 patients with histologically confirmed non-metastatic PCa with positive or negative LVI status
- Median age (IQR) for all patients was 62 (56 - 67) years
- Median PSA 5.6 (4.3 8.2) ng/mL
- Median follow-up was 42.7 months (27.1 58.7)
- Higher proportion of patients with LVI was noted in patients with Gleason grade (8-10), pathological tumor stage (pT3a and pT3b) and LNI (Table 1).
- On multivariable analysis, LVI status was not an independent predictor of OS in pT2 disease (hazard ratio [HR]: 1.11, 95% confidence interval [CI] 0.92 – 1.35, p = 0.2). However in pT3a and pT3b disease, presence of LVI had 1.2-fold (95%Cl: 1.03–1.44, p=0.02) and 1.4fold (95%Cl: 1.22–1.61, p<0.001) higher overall mortality than their counterparts without LVI (Table 2).
- 5-year OS in LVI vs. non-LVI patients is depicted in figure 1.

CONCLUSIONS

- Our report demonstrates the impact of LVI on OS in locally advanced PCa (pT3a and higher).
- This information may prove valuable when riskstratifying based on final pathology and counseling patients regarding outcomes and determining the necessity of further adjuvant treatment.

REFERENCES

- 1.Mohler, J.L., et al., *Prostate Cancer, Version 2.2019*, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2019. **17**(5): p. 479-505. 2.Fajkovic, H., et al., Validation of lymphovascular invasion is
- an independent prognostic factor for biochemical recurrence after radical prostatectomy. Urol Oncol, 2016. **34**(5): p. 233.e1-6

3.Loeb, S., et al., Lymphovascular invasion in radical prostatectomy specimens: prediction of adverse pathologic features and biochemical progression. Urology, 2006. **68**(1): p. 99-103