

Identifying the pathological predictors of PSMA avidity Comparison of preoperative locoregional Ga-68 PSMA PET-CT results with radical prostatectomy histopathology

Kam J^{1, 3}, Gore N¹, Lai B¹, Fernando H¹, Boulas J^{1,3}, Eisinger D^{1,3}, Sved P^{1,3}, Vasilaras A^{1,3}, Watson G^{1,2}, Leslie S^{1,3}

¹ Department of Urology, Royal Prince Alfred Hospital, NSW, Australia

² Department of Pathology, Royal Prince Alfred Hospital, NSW, Australia

³ Sydney Medical School, University of Sydney

Introduction

The use of Ga-68 PSMA PET/CT for primary staging of prostate cancer has increased significantly in the past few years. The majority of PSMA PET/CT literature are performed on patients with biochemical recurrence post primary treatment for prostate cancer and suffer from a lack of histopathological correlation and retrospective study design.

Aim

To compare the performance of PSMA PET/CT to radical prostatectomy histopathology to determine the pathological predictors of PSMA PET/CT

Results

29 lesions were available for analysis.

Predictors of detection on PSMA PET/CT were:

- Index lesion (100% vs. 12%), p<0.001
- ISUP score 2 or greater, p<0.001
- Tumour maximum dimension: 21.5mm vs. 5.4 mm (detected vs. undetected lesions), p<0.0001

Tumour volume: 3.2cc vs. 0.18cc (detected vs. undetected lesions), p<0.001

detection

Methods

- Prospectively maintained Uro-pathological database
- Patients included who had a PSMA PET/CT prior to radical prostatectomy between Jan 2019-Sept 2019.
- For each tumour foci correlation between histopathological results and -PSMA PET/CT
- PSMA PET/CT prediction of extracapsular extension, seminal vesicle invasion and lymph node involvement was also correlated to histopathological results
- Data was analysed using IBM SPSS 24.0.

Figure 1: Example of correlation between PSMA PET/CT (left panel) and radical prostatectomy specimen (right panel) with a benign transitional nodule (*) indenting the *tumour (SUV 40.6, Gleason 4+4=8)*

Figure 3: Relationship between Gleason score and tumour maximum dimension for prediction of PSMA avidity

Table 1: Secondary analysis of PSMA PET/CT performance for predicting extracapsular extension (ECE), seminal vesicle invasion (SVI) and lymph node involvement

	Sensitivity	Specificity	PPV	NPV
ECE (8/12)	0.5	1	1	0.5
SVI (4/12)	0.5	1	1	0.8
Lymph nodes (3/12)	0.3	0.8	0.3	0.8

Figure 2: example of a case where PSMA PET/CY (left panel) identified the Index lesions (red lesions, SUV 6.9, Gleason 4+4=8) but did not detect the secondary lesion (green *lesion, Gleason 3+3=6)*

Conclusions

PSMA PET/CT has excellent performance for detecting significant prostate cancer lesions. Small insignificant lesions are not detected by PSMA PET/CT. The performance of PSMA PET/CT for ≥pT3 disease and lymph node involvement has a high specificity but low sensitivity.

UROLOGICAL SOCIETY OF AUSTRALIA AND NEW ZEALAND