

Diagnostic efficacy of F-18-rhPSMA-7.3 PET imaging for N-staging in Intermediate and High-Risk Prostate Cancer patients validated by histopathology

AUA 2020 PD17-04 T. Maurer¹, T. Langbein², I. Rauscher², M. Kroenke², A. Wurzer³, K. Schwamborn⁴, H. Wörther², C. Franz², T. Horn⁵, W. Weber², H.-J. Wester³, Matthias Eiber²

¹ Martini-Klinik and Department of Urology, University of Hamburg-Eppendorf; ² Department of Nuclear Medicine, Klinikum rechts der Isar (RDI), Technical University Munich (TUM); ³ Chair of Radiopharmacy, TUM; ⁴ Department of Pathology, RDI, TUM; ⁵ Department of Urology, RDI, TUM;

Introduction and Objectives

⁶⁸Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET) has become a common method for primary staging of prostate cancer. ¹⁸F-labeled PSMA ligands are increasingly used because in comparison with ⁶⁸Ga-labeled counterparts they have a longer half-life, larger batch production and lower positron range resulting in higher image resolution. Radiohybrid PSMA (rhPSMA) ligands are a new class of diagnostic/therapeutic PSMA-targeting agents, which can be efficiently labeled with F-18 and radiometals and show only minimal renal excretion. Promising preliminary data have been reported for F-18-rhPSMA-7, which comprises four isomers. Based on preclinical findings, F-18-rhPSMA-7.3 was selected as the lead rhPSMA compound for clinical development. Here we report first data investigating its efficacy for primary N-staging in patients with intermediate and high-risk prostate cancer. Results were compared to morphological imaging and validated by histopathology.

Methods

Data from 56 consecutive patients with with intermediate or high-risk prostate cancer (defined by D'Amico) who had undergone F-18-rhPSMA-7.3 PET/CT-imaging before radical prostatectomy and extended pelvic lymph node dissection, were reviewed. An experienced reader carried out a template-based analysis using a 5-point scale to determine the presence of lymph node metastases. This was conducted independently for both the PET and morphological datasets. Patient-level, Right vs. Left (R vs. L) side-based and template-based results were both compared to histopathological findings.

Results

Patients' characteristics are shown in Table 1. The median injected activity of ¹⁸F-rhPSMA7.3 was 349 MBq (range, 240–449 MBq), with a median uptake time of 72 min (range, 58–102 min). Lymph node metastases were present in 18/56 patients (32.1%) located in 33 of 319 templates (10.3%) (Figure 1). On the patient-based analysis, the sensitivity, specificity and accuracy of ¹⁸F-rhPSMA7.3 PET were 81.3%, 87.5% and 85.7%, respectively, while those for morphological imaging were 33.3%, 89.5% and 71.4%, respectively. For the right vs. left analysis the sensitivity, specificity and accuracy of F-18-rhPSMA7.3-PET were 70.8%, 96.6% and 91.1%, and for morphological imaging 25.0%, 95.5% and 80.4%, respectively. On the template-based analysis, the sensitivity, specificity and accuracy of ¹⁸F-rhPSMA7.3 PET were 63.6%, 97.9% and 94.4%, respectively and those for morphological imaging were 15.2%, 99.3% and 90.6%, respectively (Table 2). On ROC analyses, F-18-rhPSMA7.3-PET showed a significantly better performance than morphological imaging on patient-, R vs. L and template-based analyses, yielding AUC values of 0.842 vs. 0.697 (p<0.05), 0.843 vs. 0.631 (p<0.001) and 0.801 vs. 0.639 (p<0.001), respectively.

Table 1: Characteristics of patient cohort (n = 56)						
Age at PET	Median (years)	66 (50-81)				
PSA at PET	Median (ng/mL)	11.0 (2.4-296.0)				
pT	<u><</u> pT2	20 (35.7 %)				
	рТ3а	7 (12.5 %)				
	≥pT3b	29 (51.8 %)				
pN	pN0	38 (67.9 %)				
	pN1	18 (32.1 %)				
LN removed / pt.	Median	21 (7-50)				
LN with mets / pt.	Median	0 (0-19)				
	7a (3+4)	7 (12.5 %)				
	7b (4+3)	28 (50.0 %)				
Gleason Score	8	7 (12.5 %)				
	9	13 (23.2 %)				
	10	1 (1.8 %)				

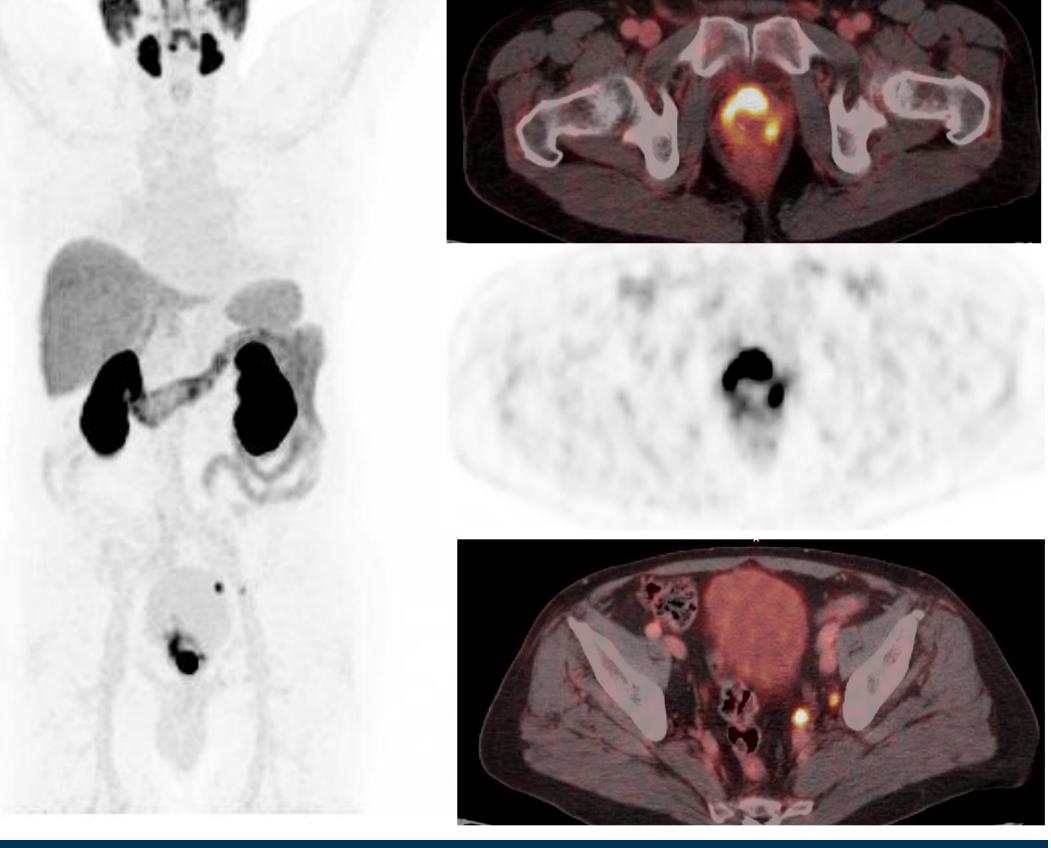


Figure 1: 72 y/o patient with high risk prostate cancer (iPSA= 44 ng/ml): ¹⁸F-rhPSMA-7.3 PET/CT detected the primary tumor and pelvic lymph node metastases histologically confirmed by radical prostatectomy (pT3b pN1 (2/34) Gleason score 3+4=7b)

Table 2: Imaging results from ¹⁸ F-rhPSMA7 PET (n = 56)									
Site of disease	Local Pe	lvic LN	Extrapelvic L	.N	Bone mets	Visceral mets			
No. pos. (%)	56 (100) (2	15 26.8)	0 (0)		3 (5.4)	0 (0)			
patient-based	Morphologic	9	1	¹⁸ F-rhPSMA7.3 PET					
analysis	Estimate in %	95%CI ir	า %	i	Estimate in %	95%CI in %			
Sensitivity	33.3	13.3 – 59	9.0	8	81.3	54.4 - 96.0			
Specificity	89.5	75.2 – 97	7.1	8	87.5	73.2 – 95.8			
PPV	60.0	32.6 – 82	2.3	-	72.2	52.6 – 85.9			
NPV	73.9	66.8 – 80	0.0	Ç	92.1	80.7 – 97.0			
Accuracy	71.4	57.8 – 82	2.7	8	85.7	73.8 – 93.6			
AUC (p<0.05)	0.697	0.560	n 049	(0.842	0.720 0.026			
(Standard error)	(0.073)	0.560 – (J.0 I 3	((0.061)	0.720 - 0.926			
Difference	0.145								
(Standard error)	(0.072)	0.003 – (J.200						
Template-based	Morphologic	al imaging	9	1	¹⁸ F-rhPSMA7.	3 PET			
analysis	Estimate in %	95%CI ir	า %	i	Estimate in %	95%CI in %			
Sensitivity	15.2	5.11 – 31	1.9	(63.6	45.1 – 79.6			
Specificity	99.3	97.5 – 99	9.9	Ś	97.9	95.5 – 99.2			
PPV	71.4	33.6 – 92	2.5	-	77.8	60.4 - 89.0			
NPV	91.0	89.8 – 92	2.1	Ś	95.9	93.7 – 97.3			
Accuracy	90.6	86.9 – 93	3.6	Ç	94.4	91.2 – 96.6			
AUC (p<0.001)	0.639	0 504	1 602	(0.801	0.752 0.042			
(SE)	(0.043)	0.584 – (J.09Z	(0.045)		0.753 - 0.843			
Difference	0.162	0.060	7.256						
(SE)	(0.048)	0.068 – 0	J. 2 30						

Conclusion

¹⁸F-rhPSMA7.3 PET is superior to morphological imaging for lymph node staging of primary intermediate and high risk prostate cancer. The efficacy of ¹⁸F-rhPSMA7.3 PET is in the same range as that previously reported in the literature for ⁶⁸Ga-PSMA11. However, ¹⁸F-rhPSMA7.3 exhibits the advantage of facilitated large batch production.