

**U.S. Department of Veterans Affairs** eterans Health Administration office of Research and Developmen

# MP80-12 A SIMPLIFIED EQUATION TO ESTIMATE NEW BASELINE RENAL FUNCTION Cleveland Clinic

Diego Aguilar Palacios MD<sup>a</sup>, Brigid Wilson PhD<sup>b,c</sup>, Mustafa Ascha PhD<sup>b</sup>, Sunah Song MS<sup>b,c</sup>, Molly E. DeWitt-Foy MD<sup>a</sup>, Steven C. Campbell MD, PhD<sup>a</sup> and Robert Abouassaly MD<sup>a,b</sup>

<sup>a</sup> Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH <sup>b</sup> Louis Stokes VAMC, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>b</sup> Louis Stokes VAMC, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>b</sup> Louis Stokes VAMC, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>b</sup> Louis Stokes VAMC, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>b</sup> Louis Stokes VAMC, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>b</sup> Louis Stokes VAMC, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>b</sup> Louis Stokes VAMC, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve University School of Medicine, Cleveland, OH <sup>c</sup> Case Western Reserve Univ

### INTRODUCTION

- To date, most predictive models for estimation of new baseline glomerular filtration rate (NB-GFR) after renal surgery for RCC are either complex, require additional studies or lack external validity.
- In this study we develop and externally validate a user-friendly equation to estimate postoperative NB-GFR.

### **METHODS**

- 8080 kidney cancer patients undergoing partial or radical nephrectomy (2005 - 2015) the Veteran's Affair National Health System were identified (RCC-VA cohort).
- NB-GFR was defined as the final GFR value 1 month (>30days) to 12 months (<365 days) postopertively.<sup>1</sup>
- All patients had both preoperative and NB-GFR estimations by CKD-EPI.
- Patients with preoperative end-stage renal disease were excluded.
- Multivariable linear regression was used to create an equation to predict NB-GFR using two-thirds of the RCC-VA cohort. The simplest equation with highest coefficient of determination (R<sup>2</sup>) was selected and tested. Correlation, bias, accuracy and precision was examined.
- The equation was then internally validated the remaining third of the RCC-VA cohort.
- For external validation, a similar cohort of 3514 patients from an outside tertiary care center was used (RCC-CC cohort).

#### **NB-GFR**= 32 + preoperative GFR(x0.67) - 18 (if RN) - age (x0.21) - 2 (if diabetes) + 2 (if tumor-size >7cm)

| Cohort                                                       | RCO           | C- VA               | RCC-CC             |
|--------------------------------------------------------------|---------------|---------------------|--------------------|
|                                                              | Development   | Internal Validation | External Validatio |
| lumber of patients                                           | 5387          | 2693                | 3514               |
| ge (years), median (IQR)                                     | 62 (57-67)    | 62 (57-67)          | 61 (53-70)         |
| lale, n (%)                                                  | 5243 (97)     | 2629 (98)           | 2301 (66)          |
| ace, n (%)                                                   |               |                     |                    |
| Caucasian                                                    | 4155 (77)     | 2069 (77)           | 3049 (87)          |
| African American                                             | 1040 (19)     | 545 (20)            | 373 (11)           |
| Other                                                        | 192 (4)       | 79 (3)              | 92 (2)             |
| olitary Kidney, n (%)                                        | -             | -                   | 222 (6)            |
| MI (kg/m <sup>2</sup> ), median (IQR)                        | 30 (26-34)    | 30 (26-34)          | 30 (26-34)         |
| CI, median (IQR)                                             | 1 (0-3)       | 1 (0-3)             | -                  |
| iabetes, n (%)                                               | 1792 (33)     | 891 (33)            | 647 (18)           |
| ypertension, n (%)                                           | 3976 (74)     | 2002 (74)           | 1742 (50)          |
| ardiovascular disease, n (%)                                 | -             | -                   | 595 (17)           |
| reoperative eGFR (ml/min/1.73m <sup>2</sup> ), median (IQR)  | 77 (61-93)    | 77 (61-92)          | 78 (60-93)         |
| CKD stage I-II (≥60 ml/min/1.73m <sup>2</sup> ), n (%)       | 4143 (77)     | 2064 (77)           | 2634 (75)          |
| CKD stage III (30 – 59ml/min/1.73m <sup>2</sup> ), n (%)     | 1145 (21)     | 581 (22)            | 804 (23)           |
| CKD stage IV (15 – 30ml/min/1.73m <sup>2</sup> ), n (%)      | 99 (2)        | 48 (2)              | 76 (2)             |
| urgical type, n (%)                                          |               |                     |                    |
| Partial Nephrectomy                                          | 2131 (40)     | 1041 (39)           | 2102 (60)          |
| Radical Nephrectomy                                          | 3256 (60)     | 1652 (61)           | 1412 (40)          |
| umor size (cm), median (IQR)                                 | 4.2 (2.8-6.5) | 4.5 (3-6.5)         | 4.0 (2.5-6.5)      |
| stage, n (%)                                                 | ( <i>/</i>    |                     | ( )                |
| T1                                                           | 3719 (69)     | 1876 (70)           | 2254 (64)          |
| T2                                                           | 596 (11)      | 308 (11)            | 217 (6)            |
| Т3                                                           | 1022 (19)     | 487 (18)            | 1006 (29)          |
| Τ4                                                           | 38 (1)        | 18 (1)              | 37 (1)             |
| 1 stage, n (%)                                               | 231 (4)       | 123 (5)             | 116 (3)            |
| 11 stage. n (%)                                              | 240(4)        | 109(4)              | 169 (5)            |
| listology. n (%)                                             | - ( )         |                     | ( - )              |
| Clear cell                                                   | 4381 (81)     | 2189 (81)           | 2436 (69)          |
| Papillary                                                    | 778 (14)      | 389 (14)            | 586 (17)           |
| Chromophobe                                                  | 167 (3%)      | 82 (3)              | 223 (6)            |
| Other                                                        | 61 (1)        | 33 (1)              | 269 (8)            |
| ostoperative eGFR (ml/min/1.73m <sup>2</sup> ), median (IQR) | 55 (43-73)    | 56 (42-72)          | 60 (44-78)         |
| CKD stage I-II (≥60 ml/min/1.73m <sup>2</sup> ). n (%)       | 2298 (43)     | 1132 (42)           | 1751 (50)          |
| CKD stage III (30 – 59ml/min/1.73m <sup>2</sup> ), n (%)     | 2658 (49)     | 1359 (50)           | 1475 (42)          |
| CKD stage IV $(15 - 30 \text{ml/min}/1.73 \text{m}^2)$ n (%) | 330 (6)       | 158 (6)             | 225 (6)            |
| CKD stage V (<15 ml/min/1 73m <sup>2</sup> ) n (%)           | 101 (2)       | 44 (2)              | 63 (2)             |

#### Table 2. Evaluation of different models to predict NB-GFR

| Variable                                                                                                                                                                                                                                                         |       |        |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--|
|                                                                                                                                                                                                                                                                  | 1     | 2      | 3      |  |
| Preoperative eGFR*                                                                                                                                                                                                                                               | 0.76  | 0.71   | 0.6    |  |
| Radical Nephrectomy                                                                                                                                                                                                                                              |       | -17.83 | -17.4  |  |
| Age*                                                                                                                                                                                                                                                             |       |        | -0.2   |  |
| Diabetes                                                                                                                                                                                                                                                         |       |        |        |  |
| Tumor Size > 7cm                                                                                                                                                                                                                                                 |       |        |        |  |
| Female                                                                                                                                                                                                                                                           |       |        |        |  |
| Caucasian                                                                                                                                                                                                                                                        |       |        |        |  |
| BMI*                                                                                                                                                                                                                                                             |       |        |        |  |
| Hypertension                                                                                                                                                                                                                                                     |       |        |        |  |
| Proteinuria                                                                                                                                                                                                                                                      |       |        |        |  |
| Model Intercept                                                                                                                                                                                                                                                  | 1.22  | 15.22  | 31.9   |  |
| R-squared                                                                                                                                                                                                                                                        | 0.503 | 0.653  | 0.6    |  |
| Abbreviations: BMI: body mass index; eGFR: estimated glomerular filtrations * Per unit of variable. Age (in years), BMI (in kg/m <sup>2</sup> ), preoperative eGFR (is **Model 5 was selected and tested as the final model since the aim was to clinical-logic. |       |        |        |  |
| Table 3. Performance of equation to                                                                                                                                                                                                                              |       |        |        |  |
|                                                                                                                                                                                                                                                                  |       | Inter  | nal Va |  |
|                                                                                                                                                                                                                                                                  |       |        |        |  |

|                                     | internal va   |
|-------------------------------------|---------------|
| Correlation (R)*                    | 0.81          |
| Bias (ml/min/1.73m <sup>2</sup> )** | -0.77         |
| Accuracy (%)***                     | 81            |
| Precision (IQR)****                 | 15.7 (-8.41 - |
|                                     |               |

Correlation between observed NB-GFR vs predicted NB-GFR

Bias = Median of residuals (observed NB-GFR – predicted NB-GFR) \*\*\* Accuracy = percentage of predicted NB-GFR values within 30% of observed NB-GFR

\*\*\*\* Precision = interguartile range of bias

### RESULTS

Figure 1. Scatterplot of the correlation among the predicted and observed NB-GFR





underestimations





n ml/min/1.73m<sup>2</sup>) represent continuous variables minimize model-size without loss of predictive-power or

#### predict NB-GFR



CONCLUSIONS

- Our analysis provides an equation to accurately predict postoperative new baseline renal function in patients being considered for partial or radical nephrectomy.
- This equation is highly accurate
- It can be easily implemented in daily clinical practice to facilitate and

# **SOURCES OF FUNDING**

Merit Pilot Award #PPO 17-216, VA Grant

# DISCLOSURES

1. Lane BR, Demirjian S, Derweesh IH, Takagi T, Zhang Z, Velet L, et al. Survival and Functional Stability in Chronic Kidney Disease Due to Surgical Removal of Nephrons: Importance of the New Baseline Glomerular Filtration Rate. Eur Urol.